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Abstract

This paper examines how heterogeneity in investment horizons determines the demand for safe
assets, bidding strategies in auctions, and post-auction price dynamics. We model a uniform-
price double auction with resale where long-term investors hold assets to maturity, while dealer
banks distribute the asset in secondary markets. Pure private (common) values emerge when
only long-term investors (dealers) participate. Using unique data on Swiss Treasury bond auc-
tions revealing bidders’ identities, our empirical findings support key predictions: (1) substantial
heterogeneity in demand schedules, with steeper demand curves for dealer banks; (2) Dealer
banks’ demand becomes steeper with increased demand risk and bid dispersion; and (3) demand
elasticity positively predicts post-auction returns.
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1 Introduction

Sovereign debt is predominantly issued through auctions, including by countries whose debt is
regarded as a safe asset.2 Safe assets, when held to maturity, carry no fundamental risk and
feature minimal information asymmetries regarding their terminal payoff.3 These characteristics
make safe government debt appealing to a diverse set of investors, each with unique investment
horizons and expected holding periods (OECD, 2019). This heterogeneity in valuations is evident
in bidding behavior at auctions, where bidding strategies often display significant dispersion and
variation over time. Motivated by this, we address two fundamental questions, both theoretically
and empirically. How does demand heterogeneity influence the pricing of safe assets in the pres-
ence of a resale market? In what ways do differences in expected holding periods and investment
horizons shape bidding strategies and post-auction price dynamics?

Theoretically, we analyze heterogeneity in the demand for safe assets using a multi-unit uniform-
price double auction model within the linear-quadratic framework (Vives, 2011). The key innova-
tion lies in our analysis of safe government debt, which is free from the fundamental uncertainty
or information asymmetries about liquidation value commonly assumed in the literature (Kyle,
1989; Vayanos, 1999). Our main methodological contribution is modeling demand heterogeneity
for safe assets through differences in investment horizons. We consider two types of investors.
First, long-term investors buy the asset at the auction and hold it to maturity. Second, short-
term investors, referred to as dealer banks, purchase the asset with the intention of distributing (at
least) a portion of it in the secondary market. In line with the preferred-habitat view (Vayanos &
Vila, 2021), we interpret long-term investors as regional banks, insurance companies, and pension
funds, which are typically less active in secondary markets. Conversely, we identify short-term
investors as dealer banks, implicitly acting as primary dealers and market makers, whose option
to resell exposes them to aggregate demand risk or inventory risk (Boyarchenko, Lucca, & Veld-
kamp, 2021; Fleming, Nguyen, & Rosenberg, 2024). The buy-and-hold behavior of long-term
investors shields them from secondary market price fluctuations, allowing them to operate with
pure private values. In contrast, dealer banks’ intent to resell implies they also operate with
common values driven by future market conditions.

Our model has three periods. First, dealer banks and long-term investors bid in an auction
for safe government bonds. Second, dealer banks trade in the secondary market with the in-
vestors that did not participate to the auction, while long-term investors abstain from trading.
Lastly, the bond pays off a deterministic amount, and the game ends. All agents incur quadratic
holding costs each period in which they hold the asset. They draw marginal cost intercepts
from a common distribution with an unknown mean, referred to as the average cost, which each
agent observes privately.Secondary market prices reflect the average cost, rendering private cost
intercepts noisy signals of post-auction capital gains. Uncertainty in post-auction gains drives
risk-averse dealer banks to demand a risk premium, a key distinction from Du and Zhu (2017),
where traders are risk-neutral. In our setup, the distribution of post-auction returns conditional

2More than 80% of OECD countries primarily issue government debt through auctions (OECD, 2016).
3See Dang, Gorton, Holmström, and Ordoñez (2017), Gorton (2017), and Gorton and Ordoñez (2022).

1



on prices and private information is endogenously linked to demand risk, cost dispersion, and
the ratio of dealer banks to total participants. Distinct from the models of Rostek and Yoon
(2021) and Allen and Wittwer (2023), where the volatility of asset returns is given, our results
show that the subjective volatility of post-auction returns, and thus subjective risk premia, vary
across investor types and depend on how many dealer banks relative to long-term investors bid
at the auction.

In our model, dealer banks participate in the secondary market while long-term investors do
not, so that we associate heterogeneity in investment horizons to heterogeneity in expected hold-
ing periods. We characterize a Bayes-Nash equilibrium in demand schedules to demonstrate
how such heterogeneity influences bidding behavior and post-auction return dynamics. A key
novelty of our approach is the analysis of an asymmetric equilibrium, where demand schedules
are symmetric within types but differ across types. We demonstrate that an equilibrium with
downward-sloping demand curves always exists and is never symmetric. Dealer banks, because
of anticipated future resales, benefit from learning about average costs from auction prices, while
long-term investors, who are not exposed to fluctuations in the secondary market price, lack such
incentives. Our model nests pure private values and pure common value as special cases. Pure
private values arise when only long-term investors participate. By contrast, a pure common
value arises when only dealer banks participate. Under private values, bidding strategies are
unaffected by demand uncertainty, cost dispersion, or risk premia. In intermediate cases, two
predictions emerge: (i) demand schedules steepen as either demand uncertainty or cost disper-
sion increases, with a more pronounced effect for dealer banks; (ii) equilibrium prices include
compensation for aggregate demand risk, tied explicitly to demand uncertainty and cost disper-
sion. Lower demand elasticity during auctions therefore positively predicts post-auction returns.
The horizon of return predictability depends on which investors are more inelastic. When only
dealer banks’ demand is less elastic, post-auction return predictability is short-lived until dealer
banks offload their inventories in the secondary market. However, when long-term investors
also exhibit inelastic demand, post-auction returns remain predictable for longer periods, up to
one month. This prediction aligns with preferred-habitat models, where mean-reverting supply
shocks impact short-term return predictability, and the effect is more pronounced when dealer
banks’ demand elasticity is lower (Greenwood & Vayanos, 2014). In contrast, shifts in long-term
investors’ elasticity influence how quickly and at what price dealer banks can offload their hold-
ings in the secondary market, thus leading to return predictability at longer horizons.

Our second major contribution to the literature is empirical. We validate our model using a
unique and novel dataset of hand-collected Swiss government bond auction data. The Swiss
setting is particularly well-suited to our research questions for at least two reasons. First, Swiss
Treasuries are widely recognized as safe assets.4 Second, Switzerland does not formally have a
primary dealer system, meaning that auctions are open to a wide range of participants. This
set includes large banks de facto acting as primary dealers as well as long-term oriented in-

4Swiss sovereign debt has never faced downgrades or negative outlooks. S&P rated U.S. debt AA+ in August
2011 and gave Germany a negative outlook in December 2011. Japan and UK are currently rated A+ and
AA. Additionally, the combination of a low debt-to-GDP ratio and prudent debt management policies minimizes
concerns about rollover risk and auction failures.
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vestors such as regional banks, pension funds, and insurance companies. A key innovation of our
dataset is that we directly observe the identities of individual bidders. Thus, we can distinguish
dealer banks performing market-making activities from investors more long-term oriented such
as pension funds, insurance companies, and smaller regional banks. Accordingly, we bring the
model to the data by interpreting large, systemic banks as dealer banks and classifying all other
bidders as long-term investors.5 Our ability to measure demand elasticities at the bidder level
is a significant improvement over prior studies, which typically rely on aggregate measures (Al-
buquerque, Cardoso-Costa, & Faias, 2024) or use only allotment and price data (Boyarchenko
et al., 2021). Furthermore, we can compare auction allotments to the secondary market alloca-
tion and validate whether the ownership structure varies over time through subsequent resales.
Our dataset spans over forty years of Treasury auctions, covering bonds with maturities from
two to fifty years. This extensive time series provides a rare opportunity to study bidding be-
havior across varying economic conditions and regulatory changes, including the Basel III reform.

Five key findings emerge from our paper. First, we document substantial cross-sectional het-
erogeneity in the level and the slope of demand schedules. Dealer banks are more cautious and
submit steeper demand curves relative to long-term investors. Across all bidders, demand elas-
ticities decline with bond maturity, consistent with a duration exposure channel (Allen, Kastl,
& Wittwer, 2024; Greenwood & Vayanos, 2014). Second, as in our theory, dealer banks are more
sensitive to demand risk than long-term investors. Dealer banks’ demand schedules become
steeper than those of long-term investors when bond return volatility rises before the auction.
Through the lens of our model, this provides evidence of a common value in Treasury bond
valuations driven by future resale in the secondary market. Third, our empirical analysis sup-
ports the hypothesis that dealer banks’ demand elasticity decreases relative to other long-term
investors when cross-sectional bid dispersion is higher. Fourth, we use a difference-in-differences
design to analyze bidding behavior before and after the implementation of Basel III capital re-
quirements, which primarily affect dealer banks through their market-making activities (BIS,
2017). Comparing dealer banks (treatment) to long-term investors (control), we find that Basel
III regulatory costs lead to steeper demand schedules for dealer banks relative to the control
group. Surprisingly, we also observe that dealer banks bid at a significantly lower discount to the
secondary market after the reform. Fifth, we explore the predictive power of changes in demand
elasticity among dealer banks versus long-term investors for post-auction returns. Consistent
with our theoretical predictions, we find that lower dealer banks’ elasticity predicts higher bond
returns up to two days after the auction. In contrast, when long-term investors also become less
elastic, returns are predictable for up to one month post-auction.

1.1 Related Literature

First, we contribute to the literature on safe assets by studying the determinants and implications
of demand heterogeneity for safe government debt across the primary and secondary markets.6

5We apply the official definition of systemically important banks in Switzerland, which is determined collab-
oratively by the Swiss National Bank (SNB) and the Swiss Financial Market Supervisory Authority (FINMA).

6The shortage of safe assets and the macroeconomic and financial stability implications are studied by Ca-
ballero and Krishnamurthy (2009), Caballero, Farhi, and Gourinchas (2017), and Caballero and Farhi (2017).
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Much of the literature focuses on the supply of safe assets, their scarcity (see, e.g., Caballero &
Farhi, 2017; Caballero, Farhi, & Gourinchas, 2016), substitutability (Krishnamurthy & Vissing-
Jorgensen, 2012a), and overall effects of their supply (Benigno & Nisticò, 2017; Infante, 2020).
We document significant heterogeneity in safe asset demand. Our main contribution is to theorize
and provide consistent evidence that heterogeneity in investment horizons introduces a demand
risk premium. As a result, our paper links the concept of safe assets to heterogeneity in demand
and the investor composition in the primary market. Another strand of the literature predicts
cross-sectional dispersion in (quasi-)safe assets and convenience yields.7 We shed light on the
mechanisms governing the demand for safe assets. Barro, Fernández-Villaverde, Levintal, and
Mollerus (2022) theorize heterogeneous risk-averse agents with rare disasters. Our paper makes
a novel contribution by theoretically modeling and empirically analyzing private and common
components in safe asset valuations, which are revealed in the primary market through strategic
interactions among bidders.

Second, we contribute to the extensive literature on bidding behavior in Treasury auctions. The
earlier literature on Treasury auctions explores the theoretical predictions of the share auction
model of Wilson (1977) and Back and Zender (2001).8 We depart from this literature by taking
the auction mechanism as given and studying the implications of demand heterogeneity on bid-
ding behavior and post-auction returns. The debate on the best way to sell government debt is
very old (Friedman, 1991). Counterfactual exercises to assess which auction format would maxi-
mize government revenue have been the subject of many studies, often concluding that switching
between discriminatory and uniform price auctions entails little efficiency gains (Hortaçsu &
McAdams, 2010). Although our model is silent on optimal auction design, we emphasize that
governments should also take into account the composition of the investor base, equipping them
with an additional tool above and beyond the auction format (discriminatory versus uniform) or
information that is disclosed prior and post auction (Dworczak, 2020). Furthermore, our unique
sample covers more than four decades of auctions for bonds with maturities ranging from 2 to
50 years, providing plenty of variation in economic conditions and asset characteristics.9 Our
assumption about investment horizons implies that dealer banks operate with a common value,
whereas long-term investors operate with pure private values. Structural models of multi-unit
auctions generally assume private values for computational tractability (Hortaçsu & McAdams,
2010; Hortaçsu et al., 2018; Richert, 2024). Hortaçsu and Kastl (2012) test for common values
in Canadian auctions for 3-month and 12-month Treasury bills by looking at whether primary
dealers update their bids after observing customer orders, but find little evidence in support of
common value components. We complement these results by inspecting Treasury auctions of

7See the discussions on the variations in the perceived safety and liquidity premiums associated with dif-
ferent assets in Krishnamurthy, 2002; Krishnamurthy & Vissing-Jorgensen, 2012b; Stein, 2012; Sunderam, 2015;
Caballero, Farhi, & Gourinchas, 2016; Nagel, 2016; Moreira & Savov, 2017; He, Krishnamurthy, & Milbradt, 2019.

8See Hamao and Jegadeesh (1998) for Japan, Nyborg, Rydqvist, and Sundaresan (2002) for Sweden, Keloharju,
Nyborg, and Rydqvist (2005) for Finland, Armantier and SbaÏ (2006) and Février, Préget, and Visser (2002) for
France, Goldreich (2007) and Hortaçsu, Kastl, and Zhang (2018) for the US, Hortaçsu and Kastl (2012) and Allen
and Wittwer (2023) for Canada, Hortaçsu and McAdams (2010) for Turkey, Beetsma, Giuliodori, Hanson, and
de Jong (2020) for euro countries, Umlauf (1993) for Mexico, and Kastl (2011) for the Czech Republic.

9In comparison, the closest data in terms of comprehensiveness is Allen, Hortacsu, Richert, and Wittwer
(2024) and Allen and Wittwer (2023) who observe Canadian auctions from 1999 to 2022.
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longer-term bonds in a setting where the primary market is open to the general public. We show
that when bidders have different investment horizons there is significant heterogeneity in how
bidding strategies respond to demand uncertainty and secondary market liquidity, suggesting the
presence of a common value for securities with longer maturity.

A more recent asset pricing literature uses Treasury auctions to explore the price impact of
anticipated and repeated supply shocks. For the US, Lou, Yan, and Zhang (2013) show that
yields drift up in the days before the auction and revert in the days after the auction. Beetsma
et al. (2020) and Albuquerque et al. (2024) also document similar auction cycles in Italy and
Portugal, respectively. Albuquerque et al. (2024) show that return predictability is driven by
auctions where the aggregate elasticity of demand is low. We contribute to this literature by
measuring demand elasticities at the bidder level and by showing that the price impact of Trea-
sury auctions is more persistent when both long-term investors and dealer banks submit steeper
demand curves. In particular, our findings support the view that demand curves for safe gov-
ernment bonds are downward sloping (Gabaix & Koijen, 2023; Vayanos & Vila, 2021), and we
illustrate a specific channel, which is heterogeneity in investment horizons, that is reflected in
bidding strategies at the auction. From the perspective of a government, our framework hints at
a trade-off between paying a demand risk premium (only dealer banks) or having a less liquid
secondary market (only long-term investors). The reduction in demand risk premia when long-
term investors participate in the auction is akin to the interpretation of insurance companies
and pension funds as asset insulators (Chodorow-Reich, Ghent, & Haddad, 2020). Furthermore,
our assumption on buy-and-hold behavior, and the mechanism through which it can potentially
impact the final allocation, finds empirical support in Musto, Nini, and Schwarz (2018), where
assets held by buy-and-hold agents eventually become more illiquid.

Third, our theoretical model extends the literature on uniform-price double auctions by study-
ing asymmetric equilibria with heterogeneous agents and deterministic payoffs. To characterize
equilibria with downward sloping demand schedules, we build on the linear-quadratic setting of
Vives (2011). As in Vives (2011), and in contrast to Kyle (1989) and Klemperer and Meyer
(1989), equilibrium existence does not rely on aggregate demand shocks or noise trading. Dif-
ferent from Vives (2011) and Rostek and Weretka (2012), however, our model simultaneously
admits pure private and common value components so that the average correlation in values
across agents participants is not constant. Common values endogenously emerge through future
resale in the secondary market, so that the investment horizon determines incentives to learn
from prices. Our empirical analysis reveals that bidding strategies are significantly heterogeneous
across investor types and respond differently to changes in risk. Existence of an equilibrium with
asymmetric strategies combined with an asset free of fundamental risk is distinct from Vayanos
(1999), Rostek and Weretka (2012), Du and Zhu (2017), and Rostek and Yoon (2021). Rostek
and Weretka (2012) study a similar environment in the linear-quadratic setting, allowing a rich
pattern of correlation in the signals in a setting with quadratic payoffs and uncertainty about
marginal costs. Du and Zhu (2017) present a model of sequential double auctions with quadratic
flow costs where common value shocks arise through signals about a stochastic terminal payoff.
In our setting, agents are risk averse, and bidders use private signals to update their estimates
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of future resale prices. In the framework of Rostek and Yoon (2021), asset returns are exoge-
nously specified and the conditional distribution of asset returns is unrelated to signal dispersion
and prior uncertainty. Duffie, Malamud, and Manso (2009) and Chen and Duffie (2021) empha-
size welfare implications but take expected returns as given and explore symmetric equilibria.
In Kyle, Obizhaeva, and Wang (2017), agents are overconfident and each of them perceive their
signal to be more informative than the other agents, but the equilibrium still remains symmetric.

1.2 Organization

The rest of the paper is structured as follows. Section 2 presents institutional setting and
describes the data. Section 3 explains the model. Section 4 presents the empirical results.
Section 5 concludes and discusses policy implications.

2 Swiss Treasury Auctions

This section describes the institutional setting of Swiss Treasury bond auctions and presents
descriptive statistics of our novel hand-collected bids data. We emphasize the institutional
background relevant to our analysis, and refer to Ranaldo and Rossi (2016) for further details.

2.1 Institutional Background

Switzerland has been one of the first OECD countries to issue government debt exclusively
through auctions for all medium- and long-term maturities. The Swiss National Bank (SNB)
has conducted sealed-bid uniform price auctions for Swiss government bonds on behalf of the
Treasury since 1980. Auction participants submit competitive demand schedules, which consist
of multiple price-quantity pairs that specify the amounts they are willing to buy (bid quantity)
at each price (bid price). Bidders can also submit non-competitive quantity bids, which are filled
with certainty.10 Bidders can simultaneously submit competitive and non-competitive bids, and
can always abstain from bidding. The SNB does not impose any restrictions on participation,
bid steps, and maximum individual awards on competitive bids. When the auction closes, the
Treasury compares aggregate demand and aggregate supply, net of non-competitive bids, to de-
termine the market clearing price, which is the lowest accepted bid. Bids below the market
clearing price are rejected, while bids above it are fully allocated at that price. Bids at the
market clearing price may be prorated.

A key feature of Swiss bond emissions is that the auctions have always been open to the general
public rather than being restricted to a limited group of primary dealers.11 This feature makes
the Swiss setting well-suited to our analysis of heterogeneity in safe asset demand for two rea-
sons. First, while large banks de facto act as primary dealers, open participation attracts a broad
spectrum of investors with different investment horizons and expected holding periods. The SNB
groups all bidders into six categories, namely cantonal banks, big banks, foreign investors, other

10The rules of noncompetitive bidding underwent several changes, see Annex I in Ranaldo and Rossi (2016).
11The literature on Treasury auctions often studies settings where only primary dealers participate to the

auction, e.g. Allen, Kastl, and Wittwer (2024) for Canada, Albuquerque et al. (2024) for Portugal, Kang and
Puller (2008) for South Korea, Nyborg et al. (2002) for Sweden and Keloharju et al. (2005) for Finland.
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banks (including private banks, trade banks, exchange banks, small credit banks), regional banks
(including savings banks and Raiffeisen banks), and a residual category that includes insurance
companies, pension funds, and individuals. Since we directly observe the identities of the bid-
ders, we can separate large and systemic banks from all the other participants and measure
bond demand at the bidder level. In both the theory and the empirical section, following the
definition applied by the SNB and FINMA12 we will refer to large and systemic banks as dealer
banks, and to all other investors such as regional banks, insurance companies and pension funds,
as long-term investors. Second, the absence of an official primary dealers system reduces artifi-
cial demand for Treasury debt driven by contractual obligations of a primary dealer system.13

Without contractual constraints, all bidders are treated equally and retain full flexibility in their
bidding strategies, creating a more transparent and competitive auction environment.
A measurement challenge arises because direct access for most non-bank financial institutions
has been curtailed after the switch to electronic bidding in 2001. While major non-bank in-
vestors can still participate directly, smaller institutions may find it more convenient to route
their bids through a direct bidder, typically a dealer bank. In such cases, we cannot distinguish
dealer banks’ bids made for their accounts from those made on customers’ behalf. We impute
such indirect bids to the corresponding direct bidder. By doing so, we obtain an upper bound
on dealer banks’ exposure to demand risk, as the actual portion of bids intended for secondary
market distribution is likely smaller. Because of this, the observed behavior of dealer banks
may more closely resemble that of long-term investors. Therefore, our approach understates the
heterogeneity in the impact of market conditions and risk on bidding strategies, strengthening
our conclusions. Furthermore, talks with practitioners indicate that indirect bidders delegate
a non-negligible portion of strategy formulation to direct bidders, rather than specifying price-
quantity pairs themselves.

The auction process begins with an announcement by the Treasury. The time between an-
nouncement and auction has gradually declined from several days to just one day since 1998.
The bidding window opens at 9:30 AM and closes at 11:00 AM. Although the settlement date
occurs several days after the auction, the securities begin trading immediately after the auction
closes. The Treasury established an advance notice period to help participants prepare for the
auctions. The auction announcement includes the coupon, the maturity, and, starting in August
1993, any amount it may want to reserve for subsequent sales in the secondary market, referred
to as cancel the own tranche. The disclosure of the emission size has become progressively
less precise over time. Initially, the Treasury announced an approximate borrowing target until
October 1991, after which it began providing a maximum borrowing amount until November
1999. Since January 2000, no information on the emission size has been disclosed prior to an
auction. After the auction, the Treasury releases summary statistics, including the total volume

12In Switzerland, the designation of systemically important banks is a collaborative process be-
tween the SNB and the Swiss Financial Market Supervisory Authority (FINMA). For more informa-
tion, see https://www.finma.ch/en/enforcement/recovery-and-resolution/too-big-to-fail-and-financial
-stability/systemically-important-banks/.

13US auctions are open to the general public, but primary dealers face constraints on participation and maximal
awards, see Hortaçsu et al. (2018) and Boyarchenko et al. (2021). Payne and Szöke (2024) show how financial
regulation creating captive demand for Treasuries can distort yields on government debt.
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of received and accepted bids, the market clearing price and yield, the sum of non-competitive
bids, payment date, (possible) fungibility with a previous issue, and the own tranche.

2.2 Data Description

The top panel of Table 1 presents descriptive statistics on the uniform-price auctions for Swiss
government bonds. Our data cover the period from 1980 to 2023 and contain bidder-level demand
schedules for 530 auctions. The total issue size is on average CHF 357.5 million (roughly USD
406 million at the current exchange rate). Though not seemingly enormous, this is significant
given Switzerland’s low public debt, with a debt-to-GDP ratio ranging from 8 to 24% during
our sample period. The average bid volume is CHF 609.9 million, which far exceeds the average
issue size. The average cover ratio (bid volume to issue size) is 1.77, indicating excess demand for
Swiss Treasury bonds. However, since the Treasury does not announce the issue size in advance
and can adjust it based on observed demand, the minimum cover ratio is effectively one. There
is significant variation over time in auction participation, ranging from a minimum of five to a
maximum of 73 participants. The average number of participants is 16.5, which is comparable
to other economies (Hortaçsu & Kastl, 2012; Kastl, 2011).

N Mean SD Min Median Max

Auction variables

Maturity 530 15.01 9.08 2.00 11.96 50.00
Issue size 530 356’879 237’243 56’700 284’375 1’553’470
Bid volume 530 607’540 461’792 99’100 475’487 4’676’315
Cover ratio 530 1.77 0.69 1.00 1.59 8.63
Bid steps 530 68.03 51.77 12.00 50.00 306.00
Participants 530 16.41 11.25 5.00 12.00 73.00

Auxiliary variables

Volatility 330 0.42 0.29 0.05 0.34 2.00
Yield spread 359 0.02 0.03 -0.05 0.02 0.19
Inflation 344 1.09 1.47 -1.44 0.73 6.57
KOF Barometer 317 -0.01 1.05 -5.69 0.05 3.55
SARON 250 0.33 1.09 -0.75 0.02 3.39
Slope 327 0.74 0.65 -1.36 0.71 2.09

Table 1: Sample summary statistics. Maturity is the difference in years between settlement date and
maturity date. Issue size (thousands CHF) is the total quantity issued in each auction, which is equal to
the sum of the allocated quantities less the own tranche. Bid volume is the total volume of bids. Cover
ratio is the ratio between bid volume and issue size. Volatility is the standard deviation of bond returns
in the month prior to the auction. Yield spread is the difference between the auction market clearing
yield and the secondary market yield. Slope is the difference between the 10-year and the 2-year yield.
The auction sample is from 1980 to present. The secondary market sample is from 2000 to present.

The average maturity is 15 years, ranging from a minimum of 2 years up to a maximum of 50
years. The left panel of Figure 1 plots the distribution of bond maturities throughout the sample.
Almost half of the 530 auctions issued medium-term bonds with a maturity between 10 and 20
years. However, our sample also includes a considerable number of emissions of bonds with ma-
turities exceeding 30 years. Auctions with fractional maturities are typically security reopenings.
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The scatter plot in the right panel of Figure 1 plots issue size and maturity for new emissions
and security reopenings over time. The market size is proportional to the issue size. Most of the
auctions after 2000 are security reopenings of already existing CUSIPs, with identical coupon rate
and maturity date. In this period, the Treasury relied on these reopenings to manage liquidity
in the secondary market. Over time, new bond emissions have become less frequent, larger in
size, and have longer maturities. Until 1990, the Swiss government only issued two bonds with
maturity longer than 20 years. In contrast, after 1995, the maturity of newly issued securities
regularly exceeds 25 years.

(a) Histogram of bond maturities.
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(b) Bond emissions over time.
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Figure 1: The left panel presents a histogram of bond maturities. The right panel plots bond issuance
over time, separating issuance of new securities (orange circles) from reopenings (blue circles). Marker
size is proportional to the issue size. The sample covers 530 auctions from 1980 to present.

2.3 Auxiliary Variables

We obtain secondary market prices for all outstanding Swiss government bonds from Bloomberg,
which provides comprehensive coverage. The secondary market sample starts in 2000, since prior
to that prices are sparse and contain significant gaps. For bond reopenings, we measure return
volatility as the standard deviation of daily returns in the month prior to each auction closing
day, provided there are at least 15 observations. The secondary market yield spread, henceforth
yield spread, is the difference between the auction market clearing yield and the prevailing sec-
ondary market yield at the auction close. We measure secondary market liquidity as the relative
bid-ask spread (RBAS), given by the ratio of the bid-ask spread to the midprice.

Most of the other auxiliary variables are from the SNB data portal. We retrieve monthly CPI
inflation data from December 1982 to the present. Daily Treasury yields and interest rate data
include overnight (SARON), one-week (SAR1W), two-week (SAR2W), and one-month (SAR1M)
rates from June 1999 onward, as well as 10-year and 2-year yields from January 1988 onward.
We compute the slope of the term structure as the difference between the 10-year and the 2-year
yield. We finally use the KOF Economic Barometer as a proxy of the business cycle.

The bottom panel of Table 1 presents summary statistics of the auxiliary variables that we use in
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the main analysis in Section 4. A positive yield spread indicates that auctions are underpriced.
On average, buying at the auction is cheaper than in the secondary market. The yield spread is 2
basis points, up to a maximum of 19 basis points. These numbers are comparable in magnitude to
earlier findings in Cammack (1991) for US three-month T-bill auctions. Throughout our sample,
there is significant variation in economic and financial conditions. The average overnight rate
(SARON) is 0.33%. While the average overnight rate is slightly positive, our sample includes
periods in which interest rates fell in negative territory down to negative 75 basis points. The
average slope of the term structure is 74 basis points. The monthly inflation rate ranges from
−1.44% to 6.57%.

3 Theoretical Framework

We propose a theoretical model of uniform price auctions in the linear-quadratic setting to study
the implications of heterogeneity in investment horizons on bidding strategies. We then use the
model to guide the empirical analysis.

3.1 Environment

Assets and Timing There are three periods, t = 0, 1, 2. The financial market consists of a
two period bond that pays off a unit of the consumption good in period 2 with certainty. There
are no other risky assets. The exogenous risk-free rate is set to zero and it is the numeraire. Let
pt denote the price of the two period bond at time t, and Qt its outstanding supply.

Agents and Preferences The economy is populated by a continuum of agents. Each agent
has CARA utility over terminal wealth Wi2 given by

− exp(−γWi2)

where γ denotes the coefficient of risk aversion. At time t = 0, the government issues Qa units
of the bond through a uniform price auction. At t = 1, agents trade the two period bond in the
secondary market. The bond matures at t = 2 and the game ends.

We assume that only a finite (exogenous) number N = n+m of bidders participates in the auc-
tion. Of those N , there are j = 1, . . . , n dealer banks and k = 1, . . . ,m long-term investors. The
difference between the two types is their expected holding period, which we refer to as investment
horizon. Dealer banks participate in the secondary market, whereas long-term investors buy and
hold until maturity. The heterogeneity in investment horizons is sufficient to break symmetry of
the linear equilibrium, and the slope of the demand schedule will be different across types. The
framework nests the special cases of pure common values (m = 0) and pure private values (n = 0).

The t = 1 budget constraint for agents that participate in the secondary market, that is the n

dealer banks plus the general public who does not bid in the auction, is

Wi2 = Wi1 + (1− p1)qi1 − λiqi1 −
κ

2
q2i1
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where qi1 denotes bond quantities and p1 is the equilibrium price. To simplify the analysis, we
assume that the secondary market is competitive, so that no agent has market power. This
assumption implies that we do not have to keep track of beliefs about the auction allocation and
information leakages in the primary market to determine the equilibrium in the secondary market.

We introduce uncertainty in the demand for safe assets by assuming that agents pay a quadratic
cost Λ(qit) = λiqit +

1
2κq

2
it for each period in which they hold the bond. We specify the cost

function such that the intercept of the marginal cost λi varies across investors, but the slope of
the marginal costs is constant and publicly known (Vives, 2011). A positive value of λi can be
interpreted as a regulatory requirement or balance sheet constraints. A negative value λi can be
interpreted as a non-pecuniary benefit from holding the asset in the spirit of Krishnamurthy and
Vissing-Jorgensen (2012a). Since the bond payoff is deterministic, the quadratic term (κ ̸= 0)

ensures that bond demand is bounded.

Agents that only participate in the secondary market (the competitive fringe) are endowed with
exogenous wealth Wi1 that they obtain from sources outside of the model (e.g. labor income).
The n dealer banks who participate in the secondary market are endowed with wealth Wi0 at
t = 0 and buy bonds in the auction such that

Wj1 = Wj0 + (p1 − p0)qj0 − λjqj0 −
κ

2
q2j0

where qj0 is the quantity of bonds purchased at the auction and p0 is the equilibrium price in
the primary market. The m long-term investors who participate in the auction cannot retrade
in the secondary market, so that their budget constraint is

Wk2 = Wk0 + (1− p0)qk0 − 2
(
λjqk0 +

κ

2
q2k0

)
We associate long-term investors with regional banks, insurance companies, and pension funds
that buy in the auction and hold to maturity with minimal retrading in the secondary market.
For simplicity, we interpret the auction as a new emission, so that the initial endowment of the
asset is zero. Without loss of generality, we normalize initial wealth to zero, Wk0 = Wj0 = 0.

Information Structure The intercept of the marginal cost λi varies across agents. Agent i

obtains a draw of λi such that λi = λ+εi prior to bidding in the auction, where λ is an unknown
parameter. Agent i privately observes λi and never reveals it to the public. We assume that
λ ∼ N (λ̄, σ2

λ) and that εi ∼ N (0, σ2
ε), where Cov(εi, εj) = 0 for i ̸= j. The prior variance σ2

λ is
interpreted as aggregate demand uncertainty, whereas the variance σ2

ε is interpreted as dispersion
in holding costs across agents. The key distinction from Vives (2011) is that each of the signals
enters each agents’ payoff directly, so that an equilibrium does not collapse in the pure common
value case. This is because agents’ strategies will still depend on λi even in situations in which
the price is a sufficient statistics of the aggregate information in the market. As opposed to Kyle
(1989), we do not explicitly rely on noise traders or random supply. Further, the asset payoff
is deterministic and there is no uncertainty about asset fundamentals. In contrast, aggregate
uncertainty at t = 0, arises endogenously through the resale market as a function of how many
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dealer banks relative to long-term investors bid in the auction. All the agents in the economy
agree about the terminal payoff of the asset, and there is no ex-ante information asymmetry.
In Kyle (1989) and subsequent literature, informed traders observe a private signal about the a
stochastic liquidation value, so that information sets are different across informed and uninformed
investors. We use the convention that

∫ 1
0 εidi = 0 so that

∫ 1
0 λidi = λ.

Primary Market We model the auction as a multi-unit uniform price auction in the quadratic-
normal setting (Vives, 2011). Auction participants compete in demand schedules. Their strategy
is a price-contingent downward sloping demand schedule {qj0(p)}nj=1, {qk0(p)}mk=1. The auction
rules are as in the canonical uniform price mechanism. The solution concept we adopt is a
Bayesian-Nash equilibrium in demand schedules. The assumption that the number of bidders is
finite and common knowledge is motivated by the fact that auctions are dominated by dealer
banks. Further, although there is no formally established primary dealer system in Switzerland,
the number of participants in the auctions tend to be much smaller than the number of investors
trading in the secondary market.
The left panel of figure 2 plots the number of participants and the fraction of each issuance
absorbed by the top three bidders. The number of bidders peaks in the early 1990s and has since
then been declining. The top three bidders absorb around 75% of each issuance on average.
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(b) Non-competitive bids and own tranches.
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Figure 2: Market concentration and issuance composition. The left panel shows the time series of
market concentration (left axis) and the number of bidders (right axis). Market concentration is defined
as the share of total bid volume or issuance absorbed by the top three bidders. The right panel breaks
down issuances by competitive bids, non-competitive bids, and own tranches. The sample is from 1980
to present.

Market Clearing From the perspective of dealer banks, supply at t = 1 is uncertain. Pur-
chases of long-term investors

∑m
k=1 qk0 effectively reduce the residual outstanding supply, so that

dealer banks must form expectations about how much will be available for trading in the sec-
ondary market. To avoid this additional layer of complications, we assume that the government
reopens the market and issues additional Q1 =

∑m
k=1 qk0 of the same bond at t = 1. This is

consistent with the idea that the Treasury relies on reopenings to improve secondary market
liquidity. Furthermore, the Treasury retains a sizable fraction of each issuance that reaches the
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secondary market only at a later stage. The right panel of figure 2 decomposes allocations across
competitive bids, non-competitive bids, and own tranches. The Treasury retains part of the issue
size for liquidity management reasons. Most of the issues are absorbed by competitive bids, but
we observe an increasing share obtained by non-competitive bidders in the most recent years.
Accordingly, the market clearing conditions in the secondary market is

Qa −
m∑
k=1

qk0 +Q1 = Qa =

∫
i
qi1di

Finally, the market clearing condition in the primary market is

n∑
j=1

qj0 +

m∑
k=1

qk0 = Qa

The market clearing price p0 equalizes aggregate demand and supply. As usual, if there is no such
price or if multiple prices exist, then no trade takes place. Strictly downward-sloping demand
schedules are sufficient to rule out trivial equilibria (Rostek & Weretka, 2012).

3.2 Equilibrium in the Secondary Market

We solve the model backwards, starting from t = 1. The secondary market is large and com-
petitive such that nobody is large enough to influence the price. Proposition 1 characterizes the
equilibrium price of the bond and the quantity demanded by each agent. The proof, which is
in the Appendix, solves for equilibrium prices and quantities by looking for a symmetric price-
taking equilibrium in demand functions. What is important to our theory is that sets of investors
in the primary and the secondary market are different.

Proposition 1 (Secondary market equilibrium). The equilibrium in the secondary market fully
reveals the average cost λ. The market clearing price is

p∗1 = 1− λ− κQa (1)

Further, equilibrium demand is

q∗1i =
λ

κ
− λi

κ
+Qa (2)

The price p∗1 declines with the average intercept λ and the slope κ. Agents with a below-average
marginal cost intercept λi purchase a quantity in excess of the per-capita supply Qa, and vice-
versa. The quadratic term in the cost function ensures that the solution for asset demand is
bounded. The assumption of a continuum of agents is convenient because it implies that the
equilibrium bond price p∗1 in Proposition 1 is fully revealing. Indeed, in the aggregate, the
idiosyncratic noise εi vanishes, and agents learn the average intercept λ from the market clearing
price. As opposed to Kyle (1989), agents submit demand schedules that depend on λi even when
the price eventually reveals λ. The reason is that the private signal λi is payoff-relevant, and so
will generate heterogeneity in agents’ demand even with in the full-information case.
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Remark on Auction Outcomes In auctions with resale, information disclosure by the auc-
tioneer has implications on the final allocation of the asset, see e.g. Dworczak (2020). The
outcome of the auction game reveals information about agents’ types and asset holdings, which
impact trading in the resale market through private information or market power. The assump-
tion of a perfectly competitive secondary market that fully reveals λ implies that any post-auction
differences in beliefs about λ are irrelevant. Further, although they are the only sellers in the
secondary market, dealers do not exert market power. This modelling strategy is common in
games where auction participants interact with each other in an aftermarket (Haile, 2001, 2003).

3.3 Equilibrium in the Primary Market

Taking p∗1 and q∗1i as given, we next characterize a linear equilibrium in demand schedules. There
are three main differences from Allen and Wittwer (2023), Malamud and Rostek (2017), and
Rostek and Yoon (2021). First, the capital gain of the bond between the auction and the sec-
ondary market is endogenous. The average intercept λ is unknown ex-ante. Hence, holding the
bond from period 0 to period 1 is still risky as the aggregate demand for bonds might be less
than expected. We refer to this risk as aggregate demand risk. A higher value of λ implies that
holding costs are higher, demand weaker, and prices lower. Second, we introduce two types of
bidders that with different investment horizons, so that the equilibrium is no longer symmetric
in general. Third, there is no uncertainty about the liquidation value of the asset.

A strategy is a mapping from the signal space to the space of non-increasing continuous func-
tions as in Vives (2011). This assumption is made for tractability, although bidders usually
submit discrete step functions rather than continuous demand schedules (Hortaçsu and Kastl
(2012); Kastl (2011)). The construction of the equilibrium is standard. First, we conjecture that
agents play linear strategies and characterize the random (inverse) residual supply curve that
each bidder faces. Second, given the conjectured strategies, we rewrite terminal consumption as
a quadratic function of the common value λ. Third, we derive best responses and solve for the
unknown coefficients as a function of the model primitives.

In the model, the intercept of marginal costs λi plays two important roles. First, it is a noisy
signal about future capital gains. Retrading in the secondary market generates a common value
component due to the fact that future prices linearly depend on the same unknown parameter
λ for all dealer banks. The common value impacts equilibrium strategies and also how bidding
behavior responds to changes in uncertainty. In fact, dealer banks will have an incentive to learn
about λ from the price p0. Second, it introduces a linear penalty for holding the bond that is
heterogeneous across agents. As a result, the signal enters directly into the payoff function, and
an equilibrium exists even in the case of pure common values.

Inverse Residual Supply Heterogeneity in investment horizons prevents the equilibrium from
being symmetric. However, within each type, each agent will submit the same demand schedule.
We construct a Bayes-Nash equilibrium in demand schedules by conjecturing that dealer banks
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(indexed by D) and long-term investors (indexed by L) submit demand schedules of the form

qj = bD − aDp− cDλj : j ∈ N = {1, . . . , n}
qk = bL − aLp− cLλk : k ∈ M = {1, . . . ,m}

where we omit the time subscript to simplify notation. Market clearing requires

n∑
j=1

qj +

m∑
k=1

qk = Qa

From the perspective of dealer j, the (inverse) residual supply is

p = dDqj + Ij,D

where dD
.
= [(n− 1)aD +maL]

−1 and Ij,D
.
= dD {(n− 1)bD +mbL − hj,D −Qa} are the (en-

dogenous) slope and intercept of the inverse (residual) supply curve. Therefore, for dealer j, the
price p is informationally equivalent to the total signal hj,D = cD

∑
j′ ̸=j λj′ + cL

∑m
k=1 λk. By

submitting a price-contingent schedule, each dealer bank essentially conditions on the random
intercept of the inverse residual supply function Ij,D. The endogenous coefficient dD determines
the price impact of each dealer bank.
A similar argument reveals that the residual supply faced by long-term investors is p = dLqk+Ik,L,
where the slope is dL

.
= [naD + (m− 1)aL]

−1 and the total signal is hj,L = cD
∑n

j=1 λj +

cL
∑m

k′ ̸=k λk′ , so that the intercept is Ij,L
.
= dM {nbD + (m− 1)bL − hj,L −Qa}. From the per-

spective of a long-term investor, p is informationally equivalent to hj,L ̸= hj,D. Hence, each
type of agents faces a different (inverse) residual supply curve. As usual, the slope of the inverse
residual supply that each agent faces depends on the strategies of the other type.

Dealers’ Problem We rewrite dealers banks’ objective substituting in the equilibrium p∗1 and
q∗j1 in the secondary market from Proposition 1. Given the strategies of the other n− 1 dealers
and the m long-term investors, the terminal wealth of dealer j is

Wj2 = (p∗1 − p0)qj − λjqj −
κ

2
q2j + (1− p∗1)q

∗
j1 − λjq

∗
j1 −

κ

2
(q∗j1)

2

The structure is reminiscent of Vayanos and Wang (2011), with the difference that trading at
time t = 0 occurs through a uniform price auction. The terminal payoff is a quadratic function
of the unknown average cost λ, that is Wj2 = π0(qj)+λπ1(qj)+

λ2

2κ where the coefficients π0(qj)
and π1(qj) are given in the Appendix. The best response of agent j therefore solves

max
qj

−ED
0

[
e
−γ
{
π0(qj)+λπ1(qj)+

λ2

2κ
π2

}∣∣∣∣λj , p0

]
(3)

The next Lemma shows that the objective in (3) is equivalent to a quadratic function of qja.

Lemma 1 (Dealers’ objective). Given strategy profiles qj′ = b − aDp0 − cDλj′ for j′ ̸= j and
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Figure 3: Effective risk aversion γ̂. The model parameters are γ = 5, κ = 3, σε = 1, m = 4, and n = 3.
Demand uncertainty is in the range σλ ∈ (0.2, 2).

qk = b− aLp0 − cLλk, dealers j’s best response solves

max
qj

π0(qj) + µλπ1(qj)−
γ̂

2

(
π1(qj) + µλκ

−1
)2 − p0qj (4)

where µλ
.
= ED

0 [λ|λj , p0] is dealer j’s posterior mean λ conditional on λj and the price p. Given
Σλ

.
= VarD0 [λ|λj , p0], the effective risk aversion coefficient γ̂ > 0 is defined as

γ̂
.
=

γ

Σ−1
λ + γκ−1

The penalty γ̂ increases with the dispersion in marginal costs σ2
ε and declines with the number of

bidders n+m. As n+m → ∞, the penalty approaches zero γ̂ → 0.

The objective (4) shows that dealer banks, and dealer banks only, are subject to a penalty from
bond holdings for three reasons. First, dealer banks must pay a quadratic holding cost, since
κ > 0. Second, dealer banks refrain from trading due to price impact dD. The third penalty
endogenously arises through the interaction of risk aversion and imperfect information about the
average marginal cost λ. When λ is known, the bond price p∗1 is deterministic, and the curvature
in the objective comes solely from the quadratic cost κ and price impact. When λ is stochastic,
however, the capital gain between the auction and the secondary market is also stochastic, and
risk-averse agents demand an additional compensation, which we interpret as inventory risk in
the spirit of Fleming et al. (2024). As a result, uncertainty about aggregate demand and signal
dispersion impact bond demand through the effective risk aversion γ̂. As an illustration of the
mechanism, Figure 3 plots γ̂ as a function of demand uncertainty σλ. This third penalty arises
endogenously through the resale motive, and not because of uncertainty about the asset funda-
mentals. In fact, the penalty is higher when the dispersion in marginal costs σε is large, when
the number of participants is low, and when the prior variance σ2

λ is high. A higher number of
bidders lowers the posterior variance Var(λ|hj , λj) = Σλ, as the market aggregates more infor-
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mation about λ, and hence about future capital gains.

In quasi-linear settings with quadratic utility, demand uncertainty and bid dispersion do affect
equilibrium strategies, but they typically do not affect the post-auction distribution of asset
returns. This happens because only the uncertainty about payoffs is penalized, and that is
independent of the distribution of signals and, consequently, demand uncertainty. For a safe
asset with no fundamental uncertainty, penalizing fundamental uncertainty only is less suitable.
This explicit penalty for demand uncertainty is absent in Rostek and Yoon (2021) because
the payoff distribution is assumed to be independent of investors’ private signals, and private
information does not convey any information about the asset risk and return. In contrast, in
Allen and Wittwer (2023) the volatility of the asset is independent of the signal precision and the
number of participants. In our setting, a larger number of participants makes the price in the
primary market more informative and mitigates demand uncertainty. This does not mean that
the uncertainty over the quantity allocation is penalized, since bidders always condition their
demand on the market clearing price.

Long-term Investors’ Problem Taking equilibrium strategies as given, long-term investor
k chooses a demand schedule to maximize

max
qk

−EL
0

[
e−γ{qk(1−p)−2λkqk−κ(qk)

2}|λk, p
]

Given that long-term investors do not access the secondary market, they pay the holding costs
for purchases qk twice, once for each period. However, their consumption is deterministic and
they face no uncertainty. In fact, long-term investors’ terminal value does not depend on the
uncertain parameter λ. The problem simplifies to

max
qk

qk(1− p)− 2λkqk − κ (qk)
2 (5)

As opposed to dealers, long-term investors refrain from trading only because of price impact and
the quadratic holding cost κ, but not because of inventory risk associated with the stochastic
capital gain. Furthermore, since their terminal wealth does not depend on λ, long-term investors
have no incentive to learn from the equilibrium price p.

Best Responses and Equilibrium Strategies The solutions to problem (4) and (5) deter-
mine the best response of each agent and, therefore, the equilibrium in the auction game. The
next Proposition characterizes necessary conditions on the coefficients to define a Bayes-Nash
equilibrium in demand schedules.

Proposition 2 (Equilibrium of the auction game). In a linear Bayes-Nash equilibrium, in de-
mand schedules, each agent type submits the demand schedules

qj0 = bD − aDp0 − cDλj : j = 1, . . . , n

qk0 = bL − aLp0 − cLλk : j = 1, . . . ,m
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The slopes a = (aD, aL) and the loadings on the private cost c = (cD, cL) solve the system

aD = (κ+ γ̂(c) + dD(a))
−1 {1− µp

λ(a, c)(γ̂(c)κ
−1 − 1)

}
(6)

cD = (κ+ γ̂(c)) + dD(a))
−1 (γ̂(c)κ−1 + 1− µλ

λ(c)(γ̂(c)κ
−1 − 1)) (7)

aL = (2κ+ dL(a))
−1 (8)

cL = 2(2κ+ dL(a))
−1 (9)

where dD(a) and dL(a) are the slope of dealer banks’ and long-term investors’ residual (inverse)
supply. The penalty γ̂(c) and the posterior loadings µp

λ(c), µ
λ
λ(c) are given in Lemma 1.

Proposition 2 shows that, if an equilibrium exists, then the coefficients on price p and holding
cost must satisfy equations (6) through (9). We refer to aD and aL as the slope of the demand
curve, and we say that demand curves are steeper when either aD and aL are small. The coeffi-
cients c = (cD, cL) are the demand loadings on the intercept of marginal holding costs, whereas
the coefficients b = (bD, bL) denote the demand intercepts.

Given equilibrium strategies, the equilibrium price in the primary market p0 is

p∗0 =
1

naD +maL

nbD +mbL − cD
∑
j

λj − cL
∑
k

λk


The revenue of the government is R0

.
= p∗0Qa and the capital gain from the auction to the

secondary market is p∗1 − p∗0 = 1− λ− κQa − p∗0.

3.4 Special Cases

We characterize the equilibrium demand schedules for two special cases that have closed-form
solutions. The first case is the pure private value (PV) case in which only long-term investors
bid in the auction. The second case is the pure interdependent values environment, which we
henceforth refer to as common value (CV), in which only dealer banks bid in the auction.

Pure Private Values We characterize the (unique) Bayes-Nash equilibrium in demand func-
tions when only long-term investors participate to the auction.

Proposition 3 (Private values). When only long-term investors bid (n = 0), the equilibrium is
symmetric and each bidder submits a linear demand schedule qk0 = aPV

L − bPV
L p0 − cPV

L λk, where

aPV
L =

m− 2

m− 1

1

2κ

cPV
L =

m− 2

m− 1

1

κ

Furthermore, µλ
λ = 0.

The equilibrium strategies in Proposition 3 do not depend on risk aversion, demand uncertainty,
and cost dispersion. The coefficient on price aPV

L only depends on the slope of marginal costs
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only κ and the total number of participants m. As the number of long-term investors grow large,
the equilibrium converges to the perfectly competitive case.

Long-term investors buy at the auction and hold the asset to maturity. As a result, the post-
auction capital gain is not payoff relevant. The private holding cost λk is a perfect signal of
long-term investors’ own payoffs. Therefore, long-term investors’ consumption is deterministic,
since movements in post-auction prices do not impact their consumption. In addition, since their
payoff is independent of λ, long-term investors have no incentive to learn from prices.

Pure Common Values Proposition 4 characterizes the equilibrium when only dealer banks
participate in the auction. Unlike in Kyle (1989), the fundamental value of the asset is known,
and the signal λj is directly payoff-relevant.

Proposition 4 (Common values). When only dealer banks bid (m = 0), the equilibrium is
symmetric and each bidder submits a linear demand schedule qj0 = aCV

D − bCV
D p0 − cCV

D λj, where

aCV
D =

(n− 2)(γ̂ + κ) + nτλ(γ̂ − κ)

(n− 1)(γ̂ + κ) [(γ̂ + κ)− nτλ(γ̂ − κ)]

cCV
D =

(n− 2)(γ̂ + κ) + nτλ(γ̂ − κ)

(n− 1)(γ̂ + κ)κ

where τλ =
σ2
λ

σ2
ε+nσ2

λ
. Furthermore, µλ

λ(c) = 0.

As in the private value case, both aCV
D and cCV

D vary with the number of bidders and with the
slope of marginal holding costs. On the other hand, bidding strategies are now sensitive to de-
mand uncertainty σ2

λ and cost dispersion σ2
ε . As it is standard in the literature, an increase in

the number of participants leads to flatter demand curves primarily because more bidders share
the aggregate risk, but also because price impact declines (Keloharju et al., 2005; Kyle, 1989).
First, an increase in the prior uncertainty about aggregate demand makes the post-auction capi-
tal gain riskier, and risk-averse bidders incorporate a demand risk-premium through the penalty
γ̂. Second, dealers have an incentive to learn about the common value component λ, since λ is
payoff relevant. Dealer banks use prices to learn about the future price of the asset and to reduce
demand uncertainty. To see why these are two distinct forces, note that aCV

D and cCV
D are differ-

ent than the private value case even when dealers are risk-neutral, that is γ = 0. The posterior
mean loading on the private signal µλ

λ(c) is zero as in the pure private value case of Proposition
3. This is because the price p0 is a sufficient statistics of the aggregate information in the market.

The equilibrium in Proposition 4 is in contrast to Kyle (1989) and Vives (2011). The equilibrium
with pure common value does not collapse even without uncertainty or noise traders. The
common value component arises endogenously through the future resale. This is also in contrast
to Biais, Martimort, and Rochet (2000), where agents are risk-neutral and common values come
from information asymmetries about a stochastic liquidation value. In our setting with safe
assets, there is no information asymmetry about the asset payoff.
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3.5 General Case

We establish existence of a Bayes-Nash equilibrium for the general case in which both long-term
investors and dealers participate in the auction. Proposition 5 also proves that there is always an
equilibrium in which all bidders submit downward sloping demand schedules, implying existence
and uniqueness of the market clearing price p0.

Proposition 5 (Equilibrium existence). Let c = (cL, cD), n > 1, m > 1. There exists a
Bayes-Nash equilibrium with downward sloping demand schedules aD > 0 and aL > 0 such that

aD(c) = cL
2−m+ κ(m− 1)cL

2n(1− cLκ)

aL(c) =
1

2
cL

The coefficients c∗ = (c∗L, c
∗
D) solve the system of equations f(c) = (f1(c), f2(c)) = c defined by

c =

(
1− µp

λ(c)(γ̂(c)κ
−1 − 1)

κ+ γ̂(c) + dD(c)
· 2n(1− cLκ)

2−m+ κ(m− 1)cL
,

γ̂(c)κ−1 + 1− µλ
λ(c)(γ̂(c)κ

−1 − 1)

κ+ γ̂(c) + dD(c)

)
where dD(c) = [(n− 1)aD(c) +maL(c)]

−1 and

µλ
λ(c) =

mσ2
λcL(cL − cD)

[(n− 1)cD +mcL]2σ2
λ +

[
c2D(n− 1) + c2Lm

]
(σ2

ε + σ2
λ)

µp
λ(c) = −

σ2
λ((n− 1)cD +mcL)

cL
2

2−κcL
1−κcL
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λ
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Further, the coefficients cL ∈
(

1
κ
m−2
m−1 ,

1
κ

)
and cD > 0 are strictly positive.

In any equilibrium with downward sloping demand curves, cL and cD are strictly positive. Fur-
thermore, cL lies between the pure private value case of Proposition 4 and the perfectly com-
petitive case. The next proposition shows that there does not exist an equilibrium in which
strategies are symmetric across investor types.

Proposition 6 (Asymmetry). Suppose m > 0 and n > 0. Then, the equilibrium strategies are
not symmetric across types. Thus, µλ

λ(c) ̸= 0.

Intuitively, equations (8) and (9) imply that cL = 2aL, whereas the ratio between aD and cD

is typically different from two. On the one hand, dealer banks find it optimal to learn about λ

in the auction. As a result, the equilibrium strategies of dealer banks depend directly on the
posterior mean µλ. On the other hand, long-term investors are indifferent about what they learn
from prices, since λ is not payoff-relevant and their terminal wealth is deterministic. Given that
long-term investors face no risk, their strategies do not directly respond to changes in demand
uncertainty σ2

λ and bid dispersion σ2
ε . The denominator of equations (6) and (7) is κ+ γ̂ + dD,

which means that dealer banks restrict trading because of holding costs, risk aversion, and price
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impact. In contrast, the denominator of equations (8) and (9) is κ+dL, which implies that long-
term investors restrict trading only because of price impact and holding costs, but not because of
risk. Importantly, this does not imply that the equilibrium strategies of long-term investors are
independent of demand uncertainty and cost dispersion. The reason this is not the case is that
changes in σ2

λ and σ2
ε do affect the equilibrium strategies of dealer banks, impacting the slope of

the residual demand that long-term investors face. As a result, even if the bond is completely
safe from the perspective of long-term investors, aL and cL still vary with demand uncertainty.

We now derive a sufficient condition on bidders’ composition such that dealer banks are more
sensitive in absolute terms to demand uncertainty relative to long-term investors

Proposition 7 (Sensitivity to demand risk). If (m− 1)(m− 2) > n, then∣∣∣∣∂aD∂σ2
λ

∣∣∣∣ > ∣∣∣∣∂aL∂σ2
λ

∣∣∣∣
Proposition 7 demonstrates that an increase in demand uncertainty impacts the slope of the
demand schedules of both investor types. While we are not able to provide a sharper analytical
characterization of the sign of these derivatives, the numerical results below indicate that ∂aD

∂σ2
λ
<

∂aL
∂σ2

λ
< 0. An increase in demand uncertainty implies that both types submit steeper demand

schedules. However, the effect is stronger for dealer banks relative to long-term investors.

Numerical Results We present numerical solutions for the general case in which both dealer
banks and long-term investors participate in the auction, solving for equilibrium strategies in
two steps. First, equations (6) through (9) in Proposition 2 form a non-linear system of four
equations with four unknowns. This system is solved numerically given parameter values for the
slope of marginal holding costs κ, risk aversion γ, demand uncertainty σλ, cost dispersion σε,
expected demand λ̄ and supply Qa. Second, given a solution to equations (6)–(9), we compute
bL = aL. Substituting aD, aL, cD, cL and bL into the non-linear equation that characterizes bD

yields another nonlinear equation, which we also solve numerically.

Figure 4 plots the price loadings a = (aD, aL) of dealer banks and long-term investors against
the ratio of dealer banks to total participants. When aD increases, we say that bidders submit
flatter demand curves. When there are no dealer banks, the equilibrium converges to the pure
private value case of Proposition 3. In the pure private value case, demand curves are the flat-
test. This is because long-term investors are not affected by demand risk σλ, and only restrict
trading because of the holding cost κ and price impact. At the other extreme, when the fraction
of dealer banks approaches one, the equilibrium approaches to the common value case, where
demand curves are the steepest. A high proportion of dealer banks intensifies adverse selection,
and dealer banks refrain from trading also because of the risky capital gain. For intermediate
cases in which the ratio of dealer banks to total participants is between zero and one, long-term
investors submit flatter demand curves relative to dealer banks. The gap between the slope of
the demand curves shrinks as the ratio of dealer banks to total participants approaches zero.
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Figure 4: Convergence to special cases. The figure plots the coefficients aD and aL as the auction
participant composition shifts from zero dealer banks to only dealer banks. The markers indicate the
pure private value case (orange) and the pure common value case (blue), with total participants fixed at
N = m+ n = 10. The model parameters are γ = 3, κ = 0.2, σε = 0.6 and σλ = 1.

Figure 5a plots the price loading a = (aD, aL) for dealer banks and long-term investors. When
uncertainty about average costs is higher, both types submit steeper demand curves. Our cali-
bration suggests that ∂aD

∂σλ
< 0 and ∂aL

∂σλ
< 0. Further, the effect is stronger for dealer banks than

for long-term investors, so that ∂aD
∂σλ

< ∂aL
∂σλ

< 0 as in Proposition 7. The relative magnitudes of
the price loadings across bidder types depend on the level of demand uncertainty. When prior
uncertainty is large, dealer banks have very noisy estimates of future prices, so that the post-
auction capital gain is riskier. Because of this, the risk-averse dealer banks act more cautiously
and submit steeper demand curves. In contrast, long-term investors adjust their strategies only
to the extent that an increase in σλ influences the price impact of their trades. This effect van-
ishes in the pure private value case, in which strategies are independent of demand uncertainty.

Conversely, Figure 5b reveals that the impact of higher demand uncertainty on the signal loading
may be asymmetric across types. In the calibration with γ = 3, long-term investors trade more
aggressively on their own private signal than dealer banks, so that cL > cD for all σλ ∈ (0, 1).
Higher demand uncertainty leads dealer banks to trade even more aggressively on their own
signal, whereas long-term investors trade less aggressively. This is because the heterogeneity
in investment horizons generates different incentives to learn from prices across investor types.
Long-term investors refrain from trading too aggressively on their private information because
doing so will reduce capital gain uncertainty and increase dealer banks’ willingness to pay.

Asymmetric responses of signal loadings c to σλ is not a universal feature across all parameter
configurations. We find that when the coefficient of risk aversion is small, e.g. γ = 1, an
increase in demand uncertainty impacts the signal loading of long-term investors and dealer
banks in the same direction. When risk aversion is low, the reduction in the demand risk

22



premium is very small, and long-term investors trade more aggressively. The asymmetry emerges
for a large enough coefficient of risk aversion because learning about the capital gain becomes
particularly valuable when dealer banks’ risk aversion is moderately large. Long-term investors
find it beneficial to trade against uninformed dealer banks and keep demand risk premia high
to lower the auction price. This mechanism only emerges when long-term investors and dealer
banks simultaneously participate in the auction. As shown Propositions 3 and 4 for the pure
private and pure common value cases, the impact of an increase in σλ always has the same sign
for all bidders. Our main takeaway is that heterogeneity in investment horizons can potentially
affect the way in which the primary and the secondary markets aggregate information.
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(b) Loading on private signal.
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Figure 5: The left panel plots the price loading a = (aD, aL) for dealer banks and long-term investors.
The right panel plots the loading on the private signal c = (cD, cL) also for dealer banks and long-
term investors. The model parameters are γ = 3, κ = 0.2, σε = 0.6, and σλ ∈ (0.2, 1). The investor
composition is m = 4 long-term investors and n = 3 dealer banks. The average holding cost is λ = 0.25,
and the prior mean is λ̄ = 0.05. Bond supply at the auction is Qa = 1.

Informational Advantages and Risk Aversion A common feature of competitive rational
expectations equilibria (Admati, 1985; Diamond & Verrecchia, 1991) is that some traders have
an informational advantage due to more precise private signals. Heterogeneity in the precision
of private information also leads to asymmetric equilibria in which bidding strategies depend on
traders’ information sets. Competitive equilibria typically imply that traders with an information
advantage submit flatter demand curves relative to uninformed traders (Vives, 2008). The same
holds in models of imperfect competition where traders no longer take prices as given (Kyle,
1989), although price impact complicates an explicit characterization of the slope of the demand
schedules. Because primary dealers generally have informational advantages (Boyarchenko et
al., 2021; Hortaçsu & Kastl, 2012), such source of heterogeneity would imply that dealer banks’
demand curves are flatter. Conversely, consistent with the empirical findings in Section 4, our
model instead implies that dealer banks’ may submit steeper demand curves (aL > aD) relative
to long-term investors when demand uncertainty is sufficiently large.

Post-auction Capital Gains The post-auction capital gain is R0|1
.
= p∗1−p∗0 = 1−λ−κQa−p∗0.

From the perspective of dealer bank j, the subjective distribution of the post-auction capital gain
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conditional on the private signal λj and p0 is

R0|1 | p0, λj ∼ N (1− µλ − κQa − p∗0,Σλ)

where µλ and Σλ are given in Proposition 5.
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Figure 6: Realized post-auction capital gain and posterior variance Σλ. The blue line plots the realized
post-auction capital gain p∗1−p∗0 against demand uncertainty. The orange line plots the posterior variance
for dealer banks Σλ against demand uncertainty. The model parameters are γ = 3, κ = 0.2, σε = 0.6,
and σλ ∈ (0.2, 1). The investor composition is m = 4 long-term investors and n = 3 dealer banks. The
average holding cost is λ = 0.25, and the prior mean is λ̄ = 0.05. Bond supply at the auction is Qa = 1.

Figure 6 plots the realized capital gain against demand uncertainty σλ. Risk-averse dealer banks
require an additional compensation for their exposure to aggregate risk between the auction and
the secondary market. The aggregate risk premium is a function of the total supply allocated to
dealer banks Qa,D =

∑n
j=1 qj0 and of aggregate demand uncertainty σ2

λ. Accordingly, the blue
line shows that, in our calibration, the realized capital gain monotonically increases in demand
uncertainty σλ. On the one hand, an increase in σλ leads to steeper demand curves. On the
other hand, risk-averse dealer banks charge an additional risk premium to hold the bond that is
positively related to the conditional variance of the capital gain Σλ. The orange line in Figure 6
shows that higher aggregate demand risk translates into higher posterior variance.

3.6 Predictions

Guided by our theory, we now formulate four empirical predictions on bidding behavior and
post-auction price dynamics that we test in Section 4. The first two predictions follow directly
from Propositions 5 and 7 and relate to the behavior of the slope of demand schedules across
investor types in response to an increase in uncertainty.

Prediction 1 (Proposition 5). Both long-term investors and dealer banks submit downward
sloping demand schedules. Dealer banks’ demand schedules are steeper.
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Prediction 2 (Proposition 7). Both long-term investors and dealer banks submit steeper demand
curves as demand uncertainty increases. Dealer banks exhibit greater sensitivity to demand un-
certainty and holding cost dispersion relative to long-term investors.

Informed by our numerical solution, we turn to post-auction return predictability. Dealer banks
are more cautious when demand uncertainty is high and submit steeper demand schedules. This
demand rigidity captures a risk premium that dealer banks require until they can resell their
inventories in the secondary market. The more rigid dealer banks’ demand is, the higher the
associated demand risk premium. Empirically, this suggests that inelastic demand from dealer
banks at the auction predicts positively predicts post-auction excess bond returns. On the other
hand, the elasticity of long-term investors can also influence post-auction price dynamics. If
dealer banks exhibit inelastic demand while other investors remain elastic, market makers can
quickly sell their positions, resulting in a short-lived impact on bond returns. Conversely, if long-
term investors also display inelastic demand, it will take longer for market makers to offload their
inventories. Hence, when both long-term investors and dealer banks exhibit inelastic demand,
we expect returns to remain predictable over longer horizons. This prediction finds support
in Albuquerque et al. (2024). Yet, our model precisely describes the mechanism and our data
on bidders’ identities allows us to distinguish between dealers and long-term investors, so that
we expand on their work by testing additional implications related to investor composition and
heterogeneity in expected holding periods.

Prediction 3 (Return Predictability). Inelastic demand from dealer banks at the auction posi-
tively predicts post-auction returns. Additionally, when both dealer banks and long-term investors
exhibit inelastic demand, returns become predictable over longer horizons.

Our theory assumes a competitive secondary market, so that there are neither trading frictions
nor transaction costs at t = 1. Therefore, the framework cannot provide explicit predictions
about how secondary market liquidity impacts bidding behavior and, vice versa, how the auction
allocation affects secondary market liquidity. However, we propose extending the empirical
analysis with an additional prediction based on heuristic reasoning. We conjecture that agents’
expectations of greater secondary market liquidity should alleviate demand rigidity, particularly
for dealer banks with shorter expected holding periods and market-making obligations (Amihud
& Mendelson, 1986). Our hypothesis is that a less liquid secondary market likely impairs market-
making activities, adversely affecting dealer banks’ profits from resale. On the other hand, we
expect long-term investors with longer expected holding periods to be less affected by secondary
market liquidity, and even sort into cheaper securities that are highly illiquid (Musto et al., 2018).
Although this final prediction is partly outside the model, it expands the scope of our analysis
and provides an additional test of our assumption on heterogeneity in investment horizons.

Prediction 4 (Secondary Market Liquidity). Dealer banks submit steeper demand curves when
they anticipate the secondary market to be more illiquid, whereas the bidding strategies of long-
term investors remain essentially unaffected.
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4 Demand Heterogeneity and Investment Horizons

We explore demand heterogeneity for Swiss Treasury bonds and empirically validate our theo-
retical model by testing Predictions 1 through 4. First, we document heterogeneity in bidding
behavior and explore its determinants over time. We then demonstrate that dealer banks’ de-
mand curves become steeper relative to all the other bidders when demand uncertainty is higher,
measured in terms of bond return volatility or bid dispersion, and when the secondary market
is more illiquid.

4.1 Bidder Demand Schedules

We document heterogeneity in demand for safe government debt by inspecting cross-sectional
differences in bidding strategies. Henceforth, j indexes auctions, i indexes bidders, and k indexes
bid steps. We construct two measures of bidding heterogeneity: one for the level and one for
the slope of demand schedules. First, we calculate the quantity-weighted yield discount for each
bidder as

Discountij =
K∑
k=1

wijkBijk − yj

where wijk =
Qijk∑K

k=1 Qijk
. For security reopenings, discountij is the difference between the average

bid yield of bidder i and the secondary market yield yj of the same bond at the end of the
auction closing day. A positive value means that bidder i is bidding, on average, less than the
secondary market price. Using the discount as a normalized measure of bid level is standard in
the literature, as it captures bidders’ strategic bid shading (Keloharju et al., 2005; Nyborg et al.,
2002). The discount is different from the yield spread in Table 1, which is the difference between
the auction market clearing price bj and the secondary market yield yj .

Second, we collect price-quantity pairs (Bijk,Qijk) such that Qijk equals the sum of the quantity
bid at bid price Bijk or above. We include non-competitive bids by adding the non-competitive
bid quantity Qnc

ijk to all quantity bids Qijk. Non-competitive bids are always fully allocated
regardless of the price. As a result, these bids do not have an associated price, but they shift
demand schedules upwards at each bid step. We then estimate the elasticity of demand βij (TE,
total elasticity) by regressing the log bid quantity qijk = logQijk onto a constant and the log
bid price bijk = log bijk. We interpret the coefficient βij as the percentage reduction in bid quan-
tity in response to a one percent increase in bid price. We use the elasticity of demand rather
than the absolute slope for better cross-sectional comparisons, as elasticities are scale-invariant
and offer a more consistent measure across bidders with significantly different bidding volumes
(Albuquerque et al., 2024). We only consider demand schedules with five or more bid steps.
A higher value of βij means that demand is more elastic and that demand curves are flatter.
As alternative measures, we estimate the elasticity of demand by dropping the highest and the
lowest bids (β̂ij , intermediate elasticity IE) and by considering winning bids only (β̃ij , winning
elasticity WE). For all three measures, we report the negative logarithm of the coefficient estimate
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Table 2 reports summary statistic on bidding behavior. Across all the 530 auctions, we observe
8’699 unique demand schedules. On average, bidders submit four bid steps, with a median of
three bid steps. The average demand schedule accounts for approximately 6.09% of the total
bidding volume. Similarly, each bidder obtains, on average, 6.09% of the total supply. In many
cases, however, the allocation is highly concentrated among relatively few bidders, with the top
bidders receiving a sizable share of the issue as in Figure 2. The average total elasticity (in
logs) is 5.08 (level is 160.77), and IE and WE are roughly the same. The average magnitude of
our estimates is comparable to those of Albuquerque et al. (2024) for Portuguese Treasury auc-
tions. The range of demand elasticities is substantial, reflecting significant heterogeneity across
bidders. The standard deviation of total elasticity is approximately one, and the elasticity of
demand ranges from 0.56 to 7.50 (in logs). As shown in Table 9 in Appendix B.1, the demand
elasticity is negatively associated with volatility, bid dispersion, illiquidity, and maturity, whereas
it is positively associated with the number of participants and total supply. The positive rela-
tionship with supply suggests that the government may increase issuance om the margin when
observing flatter demand curves. Auction participants bid higher yields than in the secondary
market, so that the yield discount is on average positive. There is, however, substantial cross-
sectional dispersion in yield discounts, ranging from a minimum of −1.45% to a maximum of
3.94%. Some bidders bid prices that are regularly higher than in the secondary market.

N Mean SD Min Median Max

Bid steps 8’699 4.15 4.11 1.00 3.00 38.00
Bid quantity 8’699 37’015 97’165 1.00 10’000 4’040’380
Bid share 8’699 6.09 10.56 0.00 1.59 92.71
Allocated quantity 8’699 21’743 53’244 0.00 4’859 1’026’580
Allocated share 8’699 6.09 11.62 0.00 1.19 98.56

TE βij 2’279 5.08 0.99 0.56 5.18 7.50
IE β̂ij 2’279 5.19 1.00 −4.34 5.29 8.01
WE β̃ij 1’601 5.26 1.14 0.36 5.35 7.85
Discountij 3’482 0.02 0.12 −1.45 0.02 3.94

Table 2: Descriptive statistics of bidding behavior. Bid steps is to the number of price-quantity pairs
submitted by each bidder. Bid quantity is the total bid volume. Bid share is the fraction of total
bid volume tendered by each bidder. Allocated quantity denotes the awarded volume per bidder, and
allocated share is the fraction of total supply allocated to each bidder. Total elasticity (TE) is the demand
elasticity using all bids. Intermediate elasticity (IE) excludes the highest and the lowest bids. Winning
elasticity (WE) uses only winning bids. Discount is the difference between the quantity-weighted bid
yield and the secondary market yield. The sample period is from 1980 to present.

Figure 7 demonstrates the heterogeneity in bidding behavior by plotting time-series averages of
total elasticity and bidder yield discounts. The left panel shows that there is significant dis-
persion in the level of demand. Approximately two-thirds of the bidders offer bid yields that
exceed those in the secondary market. In contrast, the remaining bidders are more aggressive,
often bidding higher than the price in the secondary market. The right panel displays the av-
erage time-series demand elasticity. The elasticity of the demand schedules (in logs) exhibits
significant cross-sectional variation. The two most elastic bidders have log demand elasticities
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of 6.74 and 6.64, whereas the least elastic bidder has a log elasticity of 4.48. In levels, this
disparity translates into a remarkable difference of 757.32. As in our theoretical framework for
large enough σλ, dealer banks are typically less elastic, on average, than long-term investors.
All dealer banks, except one, have a demand elasticity of no more than 5.22. Conversely, most
long-term investors submit significantly flatter demand curves.
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Figure 7: Time series averages of yield discount and demand elasticity. The left panel displays average
yield discounts for all bidders. The right panel shows the total demand elasticity (TE). The elasticity is
calculated using all bid steps submitted by a bidder, provided there are at least five. We report the log
of the negative estimated elasticity. The sample period is from 1980 to present.

Given that long-duration bonds are more sensitive to interest rate movements, we expect yield
discounts and demand elasticities to vary with bond maturity. While the relation between
yield discounts and bond maturity is ex-ante ambiguous, demand elasticities typically decline as
bond maturity increases. Table 3 presents the average yield discounts and demand elasticities
separately for dealer banks and long-term investors for different maturity intervals.

Yield discount Log demand elasticity

Maturity [2, 10) [10, 15) [15, 20) [20, 50] [2, 10) [10, 15) [15, 20) [20, 50]

Dealer banks 0.009 0.002 0.029 0.008 5.293 5.055 4.757 4.272
Long-term investors 0.025 0.013 0.034 0.025 5.627 5.495 4.860 4.511

Cantonal banks 0.017 0.019 0.053 0.035 5.533 5.505 4.671 4.565
Regional banks 0.072 0.042 0.069 0.048 5.865 5.454 4.603 4.177
Foreign-controlled 0.021 0.017 0.035 0.027 5.767 5.624 4.808 4.442
Non-finance companies 0.035 0.011 0.047 0.064 – 4.883 4.851 4.440
Others 0.025 -0.003 -0.016 -0.011 5.621 5.340 5.735 4.651

Table 3: Time series average yield discount and demand elasticity by maturity interval. The elasticity
is calculated using all bid steps submitted by a bidder, provided there are at least five. We report the
log of the negative elasticity. We group long-term investors into cantonal banks, regional banks, foreign-
controlled entities, non-finance companies, and others. The sample period is from 1980 to present.
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Two clear patterns emerge across all maturity intervals. First, dealer banks bid lower secondary
market discounts as compared to long-term investors, so that dealer banks’ underpricing is less
severe. Decomposing longer-term investors across the five bidder categories, we observe that long-
term investors’ underpricing is a robust pattern across all categories with the exception of other
bidders. Auction underpricing relative to dealer banks is particularly severe for regional banks
and non-finance companies. Second, as predicted by the theory, dealer banks submit steeper
demand schedules compared to long-term investors. We interpret this pattern through the lens
of aggregate demand risk: both bidder types shade their bids to account for price impact and
holding costs, but dealer banks also shade their bids due to risk aversion, reducing their elasticity
even further. Another consistent finding is that demand elasticity decreases with bond maturity
across all investor groups, aligning with Greenwood and Vayanos (2014). In addition, there is
substantial heterogeneity across different groups of long-term investors.

4.2 Sensitivity to Aggregate Demand Risk

We formally test Predictions 1 and 2 by comparing the responses of dealer banks and long-term
investors to an increase in demand uncertainty. We measure aggregate demand uncertainty as
the volatility of daily bond returns σj−21,j in the month prior to the auction, provided that there
are at least fifteen observations. Second, we proxy holding cost dispersion as the cross-sectional
standard deviation σb,j in quantity-weighted bid yields within each auction.
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Figure 8: Bond return volatility and adjusted demand elasticity. The blue dots indicate dealer banks.
The orange dots indicate long-term investors. Return volatility is the standard deviation of daily bond
returns in the month prior to the auction, provided that there are at least 15 observations. Log elasticity
is the average total elasticity βij . We adjust the demand elasticity for maturity by projecting βij onto
a constant and bond maturity, and computing the fitted values. The solid lines represent linear fits of
adjusted elasticity onto return volatility. The sample covers reopenings from 2000 to present.

Figure 8 plots the annualized return volatility in the month prior to the auction date against the
average elasticity of demand separately for dealer banks and long-term investors, adjusted for
bond maturity. Dealer banks typically submit steeper demand curves as compared to long-term
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investors. Further, there is a negative relation between return volatility and demand elasticity
for both investor types. In periods of high volatility, the elasticity of demand declines. However,
as shown by the solid lines, the effect is stronger for dealer banks. An increase in volatility leads
to a steepening of bank dealers’ demand curves relative to long-term investors.

Return Volatility We estimate the linear regression model

βij = b0 + b1 · σx,j + b2 · σx,j × 1{DB}i + b3 · xj + εij (10)

where βij is total demand elasticity, and σx,j is one of return volatility σj−21,j or bid dispersion
σb,j . The indicator 1{DB}i equals one if bidder i is a dealer bank. The vector of exogenous con-
trols xj includes the number of participants, the log issue size, maturity, and the relative bid-ask
spread. We also include inflation, the short-term rate, a business cycle indicator, and the slope of
the yield curve. We do not control for bidder yield discounts, which is an endogenous outcome of
the auction. The coefficients of interest are b1 and b2, where b2 captures the differential response
of dealer banks to higher volatility or bid dispersion. Predictions 1 and 2 imply that b1 and b2

should both be negative. We report estimates for σj−21,j in Table 4.

Log demand elasticity

TE βij TE βij TE βij TE βij TE βij

σj−21,j −1.58∗∗∗ −1.23∗∗∗ −0.48∗∗ −0.44∗∗ −0.30
(0.15) (0.15) (0.19) (0.19) (0.19)

σj−21,j × 1{DB}i −0.58∗∗∗ −0.56∗∗∗ −0.57∗∗∗ −0.57∗∗∗

(0.13) (0.12) (0.12) (0.12)
Maturity −0.03∗∗∗ −0.03∗∗∗ −0.02∗∗

(0.01) (0.01) (0.01)
Participants 0.02∗∗ 0.02∗∗∗ 0.02∗∗∗

(0.01) (0.01) (0.01)
Log issue size −0.08 −0.07

(0.06) (0.06)
RBASj −0.23∗∗∗

(0.08)
Constant 5.59∗∗∗ 5.62∗∗∗ 5.61∗∗∗ 6.59∗∗∗ 6.48∗∗∗

(0.08) (0.08) (0.14) (0.67) (0.67)

Macro ✓ ✓ ✓ ✓ ✓
Adj. R2 0.25 0.27 0.30 0.30 0.31
N 993 993 993 993 993

Table 4: Coefficient estimates of regression (10). The dependent variable is the total elasticity (TE)
of demand (in logs) at the bidder level. σj−21,j denotes the volatility of daily bond returns in the month
prior to the auction, whereas 1{DB} is an indicator equal to one if bidder j is a dealer bank. Maturity
refers to time to maturity at the auction date. Participants is the number of bidders. Log issue size is the
logarithm of total supply. RBASj is the relative bid-ask spread in the secondary market at the auction
date. Macro controls include inflation, the short-term rate (SARON), the slope of the yield curve, and the
KOF economic barometer. The sample is from 2000 to present and only considers security reopenings.
Robust standard errors are in parentheses. ∗, ∗∗, ∗∗∗ correspond to significance levels of 10%, 5% and
1%, respectively.
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The first column shows that the elasticity of demand declines in response to an increase in volatil-
ity. Return volatility explains roughly one quarter of the variation in total demand elasticity.
The second column demonstrates that the effect is stronger for dealer banks, and the coefficient
estimate is economically and statistically significant. A one-percentage-point increase in daily
return volatility is associated to a demand elasticity (in logs) that is 0.64 lower for dealer banks
compared to long-term investors. As in Table 3, the elasticity of demand declines with maturity.
Consistent with our theory, a higher number of participants leads to flatter demand curves as
the auction becomes more competitive. Controlling for secondary market spreads and issue size
does not affect the results. Furthermore, there is no apparent relation between the emission size
and bidding behavior. Bidders do not seem to submit steeper demand schedules when supply is
larger. In Table 10 in Appendix B.1, we obtain quantitatively and qualitatively similar results
using the intermediate elasticity (IE) and the winning elasticity (WE). Robustness checks in
Appendix B.1 confirm that our results are not driven by outlier auctions around the sudden
removal of the EUR/CHF floor (Auer, Burstein, & Lein, 2021) or during the Covid period.

Cost Dispersion We repeat the same exercise with the standard deviation of bid yields σb,j ,
which we interpret as a proxy of holding costs dispersion σε. Table 5 reports the results with
bid dispersion and illustrates a similar pattern as in Table 4.

The elasticity of demand declines with bid dispersion, but the overall effect is not statistically
significant. However, the effect is negative and statistically significant for dealer banks, as shown
in the second column. Coefficient estimates are qualitatively similar after controlling for ma-
turity, the number of participants, issue size, relative bid-ask spread, and return volatility.
As a first robustness check, we consider three alternative measures of bid dispersion, namely
the cross-sectional standard deviation of equally-weighted bid yields, the interquartile range of
quantity-weighted bid yields, and the interquartile range of equally-weighted bid yields. We
report coefficient estimates using these three measures in columns two to four of Table 13 in
Appendix B.1. For comparison, the first column on Table 13 is identical to the fourth column
of Table 5. Across all different measures and specifications, the coefficient on the interaction
between bid dispersion and the dealer bank indicator is negative and statistically significant,
as predicted by our theory. We also separately test whether the total effect b1 + b2 is negative
and statistically significant, and we reject the null that b1 + b2 ≥ 0. Overall, an increase in bid
dispersion is associated with dealer banks submitting steeper demand schedules relative to all
other investors. The magnitude of the coefficient is larger when we consider the interquartile
range because of the different units.
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Log demand elasticity

TE βij TE βij TE βij TE βij

σb,j −0.23 0.62 0.44 0.56
(0.50) (0.41) (0.36) (0.38)

σb,j × 1{DB}i −1.96∗∗ −1.91∗∗ −1.90∗∗

(0.93) (0.81) (0.87)
Maturity −0.04∗∗∗ −0.02∗∗

(0.00) (0.01)
Participants 0.02∗∗ 0.03∗∗∗

(0.01) (0.01)
Log issue size −0.08

(0.06)
σj−21,j −0.65∗∗∗

(0.19)
RBASj −0.23∗∗∗

(0.08)
Constant 4.94∗∗∗ 4.96∗∗∗ 5.61∗∗∗ 6.53∗∗∗

(0.06) (0.07) (0.13) (0.68)

Macro ✓ ✓ ✓ ✓
Adj. R2 0.12 0.13 0.27 0.30
N 1’087 1’087 1’087 993
p-sum 0.08 0.04 0.07

Table 5: Coefficient estimates of regression (10). The dependent variable is the total elasticity (TE) of
demand (in logs) at the bidder level. σb,j is the cross-sectional standard deviation of quantity-weighted
bid yields, whereas 1{DB}i is an indicator equal to one if bidder i is a dealer bank, and zero otherwise.
Maturity refers to time to maturity at the auction date. Participants is the number of bidders. σj−21,j

denotes the volatility of the bond in the month prior to the auction. Log issue size is the logarithm of
supply. RBASj is the relative bid-ask spread at the auction date. Macro controls include inflation, the
short-term rate (SARON), the slope of the yield curve, and the KOF economic barometer. The sample is
from 2000 to present and only considers security reopenings. Robust standard errors are in parentheses.
∗, ∗∗, ∗∗∗ correspond to significance levels of 10%, 5% and 1%, respectively. p-sum is the p-value from
testing the null hypothesis that b1 + b2 ≥ 0.

A major challenge in constructing proxies for holding cost dispersion is that bidders’ holding
costs are unobservable. While the cross-sectional volatility in bid yields σb,j is related to σε,
the dispersion in bid yields is an endogenous outcome that directly reflects bidders’ strategies.
In particular, the slope of their demand schedules and the number of bid steps influence this
dispersion measure. As a result, the connection between the demand slope and the observed
cross-sectional dispersion in bid yields is partly mechanical, and unrelated to how heterogeneity
in investment horizons shapes bidding behavior. Because the alternative proxies discussed in
Appendix B.1 also face the same limitation, we construct a measure of cross-sectional dispersion
that does not rely on the standard deviation of bid yields. For each auction j, given price-quantity
pairs (Bijk,Qijk) for bidder i, we estimate the regression

qijk = δ0 + 1{DB}i + δ1bijk + δ21{DB}i × bijk + γi + εijk (11)

where γi is a set of bidder fixed effects and 1{DB}i is an indicator equal to one if bidder i is
a dealer bank. Again, we add non-competitive bid quantities to Qnc

ijk to each bid step. The
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proxy for σε is the standard deviation of the regression residuals σ̂ε,j =
√
Var(εijk). Table 14 in

Appendix B.2 reports estimates of specification (10), but measuring holding cost dispersion using
σ̂ε,j . Table 14 corroborates our findings that dealer banks steepen their demand curves relative
to long-term investors when dispersion in holding costs is higher. The coefficient estimate on
the interaction term is negative and statistically significant in all four columns. The total effect
b1+b2 of higher bid dispersion on dealer banks is also negative and statistically significant across
most specifications. In summary, Table 4, Table 5, Table 13, and Table 14 strongly suggest that
bidding strategies respond to changes in aggregate uncertainty that we proxy by either bond
return volatility or bid dispersion. The effect is stronger for dealer banks, which are significantly
more sensitive to uncertainty relative to long-term investors.

4.3 Holding Costs and Bidding Behavior

We next investigate how changes in the regulatory environment influence bidding behavior in
the primary market. Basel III regulations impose higher capital requirements and introduce
additional buffers for large systemic banks, especially those engaged in market-making activities
(Duffie, 2016). These regulatory measures directly impact the dealer banks in our sample. As
a result, we hypothesize that dealer banks will submit steeper demand curves than other in-
vestors, such as pension funds, insurance companies, and regional banks, who are not subject
to comparable regulatory constraints. To this purpose, we implement a difference in differences
(DiD) design around the gradual implementation of the Basel III regulatory framework, which
we interpret as an increase in the slope of marginal holding costs κ of dealers only. Although
the regulation was first endorsed in 2013, the capital requirements have been gradually phased
in starting in January 2015. Therefore, we implement a difference in differences (DiD) design
around January 1, 2015. To increase statistical power we consider a symmetric window of five
years around January 1, 2015. In robustness checks reported in Appendix B.2, we perform the
same analysis using a three year and a four year window, and estimates are qualitatively and
quantitatively similar. The pre-implementation period is from January 2010 to January 2015.
The post-implementation is from January 2015 to January 2020. The DiD design is

zij = b0 + b1 · 1{Basel III}j + b2 · 1{DB}i + b3 · 1{Basel III}j · 1{DB}i + b4 · xj + εij (12)

The indicator Basel IIIj equals one if auction j occurred post 2015 when Basel III requirements
were being phased in. Similarly, 1{DB}i is an indicator variable equal to one if bidder i is a
dealer bank. We expect a negative coefficient, that is liquidity and capital requirements make
systemic banks less elastic relative to other bidders who are not subject to Basel III. We consider
two outcome variables zij , that is the total elasticity of demand (TE βij) and the yield discount
(discountij). The vector of controls xj includes bond maturity, the number of participants, and
the issue size. Through the lens of Proposition 2, we expect an increase in dealer banks’ holding
cost to cause a steepening of their demand curves relative to long-term investors that are not
subject to the regulation. Accordingly, when the dependent variable is the elasticity of demand,
we expect the coefficient b3 to be negative.

Table 6 reports coefficient estimates using the log total demand elasticity and the yield discount
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as the dependent variable. As in Figure 7, the first and the second columns show that dealer
banks submit, on average, steeper demand schedules relative to other auction participants. The
first column shows that, in the post-Basel III period, the gap between dealer banks’ and long-term
investors’ demand elasticity has grown. The coefficient estimate of −0.57 is highly statistically
and economically significant. The introduction of the Basel III framework is associated to a
reduction of 0.57 (in log units) in dealers’ elasticity of demand relative to other investors. The
magnitude and the statistical significance remain stable after controlling for maturity, number
of participants, and issue size. Robustness checks in Appendix B.2 exclude auctions around the
sudden EUR/CHF floor removal on January 15, 2015 and recover similar estimates.

Log elasticity Yield discount

TE βij TE βij Discountij Discountij

1{Basel III}j −0.11 −0.10 0.02 0.02∗∗

(0.14) (0.13) (0.01) (0.01)
1{DB}i −0.21∗∗ −0.27∗∗∗ 0.01 0.01

(0.10) (0.09) (0.01) (0.01)
1{Basel III}j × 1{DB}i −0.57∗∗∗ −0.40∗∗ −0.03∗∗ −0.03∗∗

(0.19) (0.16) (0.01) (0.02)
Maturity −0.05∗∗∗ -0.00

(0.00) (0.00)
Participants -0.02 -0.00

(0.02) (0.00)
Log issue size −0.00∗∗ 0.00

(0.00) (0.00)
Constant 5.35∗∗∗ 6.59∗∗∗ 0.01 0.02

(0.08) (0.26) (0.01) (0.04)

Adj. R2 0.10 0.31 0.00 0.00
N 562 562 1’375 1’375

Table 6: Coefficient estimates of the difference in differences specification (12). In the first and second
column, the dependent variable is the total elasticity of demand (in logs). In the third and in the fourth
column, the dependent variable is the quantity-weighted yield discount. 1{Basel III}j is an indicator
equal to one if the auction occurs after January 2015. 1{DB}i is an indicator equal to one if bidder i is
a dealer bank. The sample period is from January 2010 to December 2019 and spans a five-year window
around the introduction of the Basel III regulations. Robust standard errors are reported in parentheses.
∗, ∗∗, ∗∗∗ correspond to significance levels of 10%, 5% and 1%, respectively.

The third and the fourth columns reveal that large banks have been offering lower yields (higher
prices) than in the secondary market after the introduction of capital requirements. The fourth
column implies that dealer banks bid at significantly lower discounts of 3 basis points relative
to the secondary market. However, the DiD specification explains very little of the variation in
bidder level yield discounts. Taken together, our results indicate that regulatory requirement
cause dealer banks’ demand schedules to become steeper.

4.4 Relation to Secondary Market Outcomes

In this final section, we further examine how bidding strategies influence outcomes in the sec-
ondary market and, vice versa, how secondary market conditions influence bidding behavior. To
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this purpose, we first study how demand elasticities respond to secondary market liquidity. Sec-
ond, we explore the connection between bidding behavior and post-auction return predictability.

Market Liquidity Our assumptions of investment horizons and resale imply that dealer banks
with a shorter expected holding period behave more cautiously when the secondary market is
expected to be illiquid. In contrast, long-term investors with longer holding periods are less
affected by liquidity conditions (Amihud & Mendelson, 1986). To test our conjecture that dealer
banks’ demand schedules become less elastic in response to higher illiquidity, we estimate the
linear regression model

βij = b0 + b1 · RBASj + b2 · RBASj × 1{DB}i + b3 · xj + εij (13)

We measure liquidity in the secondary market using the relative bid-ask spread RBASj at the
auction close date. Due to the strong autocorrelation in bid-ask spreads, the current bid-ask
spread well captures expectations about future liquidity conditions in the secondary market.14

Log demand elasticity

TE βij TE βij TE βij TE βij TE βij

RBASj −0.63∗∗∗ −0.43∗∗∗ −0.10 −0.08 −0.00
(0.05) (0.06) (0.09) (0.09) (0.09)

RBASj × 1{DB}i −0.31∗∗∗ −0.31∗∗∗ −0.32∗∗∗ −0.33∗∗∗

(0.06) (0.06) (0.06) (0.06)
Maturity −0.03∗∗∗ −0.03∗∗∗ −0.02∗∗∗

(0.01) (0.01) (0.01)
Participants 0.02∗∗∗ 0.03∗∗∗ 0.03∗∗∗

(0.01) (0.01) (0.01)
Log issue size −0.11∗∗ −0.08

(0.05) (0.06)
σj−21,j −0.69∗∗∗

(0.19)
Constant 5.63∗∗∗ 5.65∗∗∗ 5.56∗∗∗ 6.80∗∗∗ 6.50∗∗∗

(0.07) (0.08) (0.13) (0.63) (0.67)

Macro ✓ ✓ ✓ ✓ ✓
Adj. R2 0.25 0.27 0.29 0.30 0.31
N 1’087 1’087 1’087 1’087 993

Table 7: Coefficient estimates of regression (13). The dependent variable is the total elasticity (TE) of
demand (in logs) at the bidder level. RBASj is the relative bid-ask spread at the auction date, whereas
1{DB}i is an indicator equal to one if bidder i is a dealer bank, and zero otherwise. Maturity is the time
to maturity at the auction date. Participants is the number of bidders. σj−21,j denotes the volatility of
the bond in the month prior to the auction. Log issue size is the logarithm of supply. Macro controls
include inflation, the short-term rate (SARON), the slope of the yield curve, and the KOF economic
barometer. The sample is from 2000 to present and only considers security reopenings. Robust standard
errors are in parentheses. ∗, ∗∗, ∗∗∗ correspond to significance levels of 10%, 5% and 1%, respectively.

Consistent with Prediction 4, the last three columns in Table 7 reveal that a higher relative
bid-ask spread leads to a steepening of dealer banks’ demand curves only, whereas there is no

14Using moving averages or fitted values produces similar results.
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effect on the demand elasticity of long-term investors. The estimates on the interaction term
are economically and statistically significant across all specifications. The significance of the
unconditional effect b1 vanishes once we control for bond maturity and the number of participants.
Both the sign and the significance of these estimates are consistent with our interpretation on
heterogeneity in investment horizons. Furthermore, the effect remains highly significant after
controlling for return volatility, suggesting that market liquidity impacts bidding behavior over
and above aggregate risk. Long-term investors with a longer holding period are not affected by
secondary market liquidity as they do not plan to resell the security right after the auction. On
the other hand, dealer banks are more exposed to changes in liquidity conditions around the
auction through their market making activities. We obtain the same results when we consider
the average bid-ask spread in the month prior to the auction.

Return Predictability Lastly, we validate our mechanism by studying the relation between
bidding behavior and post-auction return predictability. We test Prediction 3 by estimating
predictive regressions of post-auction excess return on demand elasticities. For each auction j, we
construct one-day, two-day, one-week and one-month post-auction excess bond returns rxj,j+h,
for h ∈ {1, 2, 5, 21}. We compute returns relative to market clearing price at the auction given
that this is the price at which auction participants purchased the securities. We convert returns
into excess returns by subtracting the horizon-matched risk free rate. For h ∈ {1, 2} we use the
SARON, whereas for h = 5 and h = 21 we use the SAR1W and SAR1M rates, respectively.
Accordingly, we project bond excess return on the average demand elasticity β̄j =

1
I

∑I
i=1 βij

rxj,j+h = b0 + b1 · β̄j + b2 · xj + εj (14)

where xj includes bond maturity, the number of participants, the issue size, and the relative
bid-ask spread. The intuition is that dealer banks require a risk premium to hold the securities
between the auction and the secondary market because the post-auction capital gain is stochastic.
In our theory, this risk premium increases with demand uncertainty and the aggregate quantity
purchased by these agents at the auction. Because demand elasticities decline with aggregate
uncertainty, a less elastic average demand positively predicts post-auction returns. We further
separate dealer banks and long-term investors to assess whether the horizon of return predictabil-
ity depends on which investor bids less elastic demand schedules. Intuitively, the demand risk
premium vanishes as soon as dealer banks are able to distribute their inventories in the secondary
market. This becomes less likely if long-term investors also have inelastic demand, and the resale
price can potentially be lower. Consequently, a more rigid demand solely from dealer banks
should predict returns only at a short horizon. In contrast, when long-term investors are also
less elastic, it will likely take longer for dealer banks to unwind their inventories. Because of
this, dealer banks will bear inventory risk for a longer period, leading to return predictability at
longer horizons. To this purpose, we estimate

rxj,j+h = b0 + b1 · β̄LT
j + b2 · β̄DB

j + b3 · xj + εj (15)

The top panel of Table 8 reports coefficient estimates of the predictive regression (14). We find
short-term return predictability until one week after the auction. For very short horizons, the
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regression R2 statistics are relatively sizable. The first column documents that the average de-
mand elasticity explains up to 12% of the one-day post-auction excess bond returns. However,
although coefficients estimates have the expected sign and are statistically significant, their mag-
nitudes do not follow any clear pattern.

The bottom panel of Table 8 reveals a different picture once we distinguish between long-term
investors and dealer banks. A decline in the demand elasticity of dealer banks positively predicts
post-auction excess bond returns only up to two days after the auction. However, estimates
for horizons longer than one week are statistically indistinguishable from zero. In contrast, the
elasticity of demand of long-term investors predicts post-auction bond returns up to one month
after the auction. Further, the coefficient on β̄LT

j increases monotonically with the horizon.

rxj,j+1 rxj,j+2 rxj,j+5 rxj,j+21

Aggregate elasticity

β̄j −0.20∗∗∗ −0.17∗∗ −0.28∗∗ −0.28
(0.07) (0.08) (0.14) (0.28)

Constant ✓ ✓ ✓ ✓
Controls ✓ ✓ ✓ ✓
Adj. R2 0.12 0.03 0.00 0.04
N 342 342 338 314

Dealer banks vs. long-term investors

β̄LT
j −0.19∗∗ −0.27∗∗∗ −0.41∗∗∗ −0.70∗∗∗

(0.09) (0.09) (0.11) (0.27)
β̄DB
j −0.22∗∗ −0.14 −0.09 0.35

(0.09) (0.11) (0.14) (0.28)
Constant ✓ ✓ ✓ ✓
Controls ✓ ✓ ✓ ✓
Adj. R2 0.14 0.06 0.03 0.05
N 226 226 223 205

Table 8: Coefficient estimates of regressions (14) and (15). The top panel regresses h-day ahead excess
returns onto the average total elasticity (TE) across all participants in the auction, which is computed
as β̄j = 1

I

∑I
i=1 βij . The bottom panel regresses h-day ahead excess returns onto the average demand

elasticity of systemic banks β̄DB
j and of all the other bidders β̄LT

j separately. Excess returns are computed
based on the auction price. Controls include maturity, number of bidders, the relative bid-ask spread,
and the log issue size. The sample is from 2000 to present. Robust standard errors are in parentheses. ∗,
∗∗, ∗∗∗ correspond to significance levels of 10%, 5% and 1%, respectively

5 Conclusion

This paper demonstrates, both theoretically and empirically, that heterogeneity in investment
horizons plays a critical role in determining bidding behavior and post-auction price dynamics
of safe assets. Using a novel dataset with detailed bidder identities, we show that short-term
oriented dealers are more sensitive to demand uncertainty, resulting in steeper demand curves
and asset return predictability lasting only a few days. In contrast, long-term investors’ inelastic
demand extends return predictability to longer horizons, up to one month. These findings em-
phasize how changes in investor base can impact the risk-return profile of safe assets and their
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post-auction dynamics.

Our paper provides at least three important implications for both policy makers and academics.
First, our theoretical findings offer new insights into how investors price safe assets and how
differences in investment horizons influence bidding behavior in the primary market. Second,
we propose a novel approach to Treasury auction design, emphasizing the critical role of bidder
composition. Our findings reveal that both how an asset is sold and to whom it is sold signif-
icantly impact its return distribution. Unlike much of the existing literature, which focuses on
auction rules and post-auction disclosure of results, we highlight the heterogeneity among auction
participants and their investment horizons (dealers versus long-term investors). Our results hint
at a trade-off between secondary market liquidity (supported by dealers) and post-auction price
volatility (driven by their short-term trading horizons and inventory offloading). This trade-off
allows us to derive the costs and benefits of a primary dealer system. On the cost side, pri-
mary dealership induces a risk premium that the government must bear. On the benefit side,
a well-established primary dealer system ensures a more liquid secondary market. Our policy
recommendation to Debt Management Offices is to integrate secondary market dynamics into the
auction design process, rather than treating auctions in isolation. Lastly, our paper revisits the
concept of a safe asset by linking it to demand risk and investment horizons, extending the tradi-
tional view that focuses on fundamental risk or information asymmetry (Dang et al., 2017). This
broader perspective highlights the role of investor heterogeneity as a key determinant of asset
prices, showing that market structure can influence prices and, ultimately, the final allocation,
even in settings without fundamental risk or information asymmetry.
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Appendices

A Mathematical Results

A.1 Proofs

A.1.1 Proof of Proposition 1

Proof. We construct a linear symmetric equilibrium by conjecturing that demand is

qi1 = a− bp1 − cλi

Market clearing requires ∫
i
(a− bp1 − cλi)di = a− bp1 − cλ = Qa

42



so that the price is informationally equivalent to λ. As a result, E[λ|λi, p] = λ, and the secondary
market equilibrium is fully revealing. Agent i’s objective is

−max
qi1

E1 [ exp(−γWi2)]

subject to the budget constraint

Wi2 = Wi1 + (1− p1)qi1 − λiqi1 −
κ

2
q2i1

Given E[λ|λi, p] = λ, all the uncertainty is resolved, and the problem is rewritten as

max
qi1

Wi1 + (1− p1)qi1 − λiqi1 −
κ

2
q2i1

The first-order condition is

(1− p1)− λi − κqi1 = 0 =⇒ qi1 = a− bp1 − cλi =
1− p1 − λi

κ

Matching coefficients gives

c =
1

κ
: a =

1

κ
: b =

1

κ

which verifies the initial conjecture. Market clearing requires

1− p1 −
∫
i λidi

κ
=

1− p1 − λ

κ
= Qa =⇒ p1 = 1− λ− κQa

Plugging p∗1 into the demand function gives the desired result and completes the proof.
■

A.1.2 Proof of Lemma 1

Proof. From Proposition 1, the equilibrium in the secondary market is p∗1 = 1 − λ − κQa and
q∗1i =

λ
κ − λi

κ +Qa. Plugging these expressions into the dealers’ budget constraint gives

Wj2 = (p∗1 − p)qj − λjqj −
κ

2
q2j + (1− p∗1)q

∗
j1 − λjq

∗
j1 −

κ

2
(q∗j1)

2

= (1− λ− κQa − p)qj − λjqj −
κ

2
q2j +

λ2

2κ
+

λ2
j

2κ
− λλj

κ
+Qa(λ− λj) +

κ

2
Q2

a

= (1− κQa − p)qj − λjqj −
κ

2
q2j +

λ2
j

2κ
−Qaλj + λ

(
Qa − qj −

λj

κ

)
+

λ2

2κ
+

κ

2
Q2

a

Let

π0(qj)
.
= (1− κQa − λj)qj −

κ

2
q2j

π1(qj)
.
=
(
Qa − qj − λjκ

−1
)
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so that

Wj2 =
λ2
j

2κ
−Qaλj +

κ

2
Q2

a + π0(qj) + π1(qj)λ+
λ2

2κ
− pqj

is a quadratic function of λ. As a result, the objective is rewritten as

−ED
0

[
−e−γWi2 |p, λj

]
= −ED

0

[
−e

−γ
(
π0(qj)+π1(qj)λ+

λ2

2κ
−pqj

)∣∣∣∣ p, λj

]
e
−γ

(
λ2j
2κ

−Qaλj+
κ
2
Q2

a

)

Further, let µλ = ED
0 [λ|λj , p] and Σλ = VarD0 [λ|λj , p] denote the posterior mean and variance

of λ from the perspective of a dealer. It follows that the random variable λ is rewritten as
λ = µλ + η, where η ∼ N (0,Σλ). Then, terminal wealth is written as

Wj2 =
λ2
j

2κ
−Qaλj +

κ

2
Q2

a +
µ2
λ

2κ
+ π0(qj) + µλπ1(qj) + η

(
π1(qj) + µλκ

−1
)
+ η2

1

2κ
− pqj

where the elements
λ2
j

2κ −Qaλj +
κ
2Q

2
a +

µ2
λ

2κ do not depend on qj and only enter as multiplicative
constants. The objective is an expectation of a quadratic form of normal variables, so that

ED
0

[
−e−γWi2 |p, λj

]
=

1√
detΣλ det

(
Σ−1
λ + γκ−1

)e−γπ0(qj)−γpqj+
γ2

2

(π1(qj)+µλκ−1)
2

Σ−1
λ

+γκ−1
e
−γ

(
λ2j
2κ

−Qaλj+
κ
2
Q2

a+
µ2λ
2κ

)

It follows that the dealers’ problem is equivalent to

max
qj

π0(qj) + µλπ1(qj)−
γ̂

2

(
π1(qj) + µλκ

−1
)2 − pqj

where we define dealers’ effective risk aversion as

γ̂
.
=

γ

Σ−1
λ + γκ−1

In the final step of the proof, we characterize the posterior distribution of λ conditional on p

and λj . The price p is informationally equivalent to the total signal hj,D. Hence, the joint
distribution of the signals and the parameter λ is normal and given by

θj
.
=

 λ

λj

hj,D

 ∼ N
(
ED
0 [θj ],VarD0 (θj)

)
The mean and the variance-covariance matrix are given by

ED
0 [θj ] =

 λ̄

λ̄

λ̄c̄

 : VarD0 (θj) =

 σ2
λ σ2

λ c̄σ2
λ

σ2
λ σ2

λ + σ2
ε c̄σ2

λ

c̄σ2
λ c̄σ2

λ c̄2σ2
λ + σ2

ε [c
2
D(n− 1) + c2Mm]
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where we define

c̄
.
= [(n− 1)cD +mcL]

The projection theorem for normal distributions implies

µλ
.
= ED

0 [λ|hj,D, λj ] = µλ +ΣλsΣ
−1
ss (s− µs)

where s is short-hand notation for the vector of signals λj and hj,D. Some algebra yields

µλ = λ̄+
1

c̄2σ2
λ +

[
c2D(n− 1) + c2Lm

]
(σ2

ε + σ2
λ)

(
σ2
λ

[
c2D(n− 1) + c2Lm

]
c̄σ2

λ

)( λj − λ̄

hj,D − λ̄c̄

)

Using the definition of the total signal hj,D = nbD − naDp+mbL −maLp− cDλj −Qa gives

µλ = λ̄
σ2
ε [c

2
D(n− 1) + c2Lm]

c̄2σ2
λ +

[
c2D(n− 1) + c2Lm

]
(σ2

ε + σ2
λ)

+ λj
mσ2

λcL(cL − cD)

c̄2σ2
λ +

[
c2D(n− 1) + c2Lm

]
(σ2

ε + σ2
λ)

−
c̄σ2

λ[naD +maL]

c̄2σ2
λ +

[
c2D(n− 1) + c2Lm

]
(σ2

ε + σ2
λ)
p+

c̄σ2
λ(nbD +mbL −Qa)

c̄2σ2
λ +

[
c2D(n− 1) + c2Lm

]
(σ2

ε + σ2
λ)

= λ̄µ̄λ + λjµ
λ
λ + µp

λp

where

µ̄λ
.
=

λ̄σ2
ε [c

2
D(n− 1) + c2Lm]

c̄2σ2
λ +

[
c2D(n− 1) + c2Lm

]
(σ2

ε + σ2
λ)

+
c̄σ2

λ(nbD +mbL −Qa)

c̄2σ2
λ +

[
c2D(n− 1) + c2Lm

]
(σ2

ε + σ2
λ)

and µλ
λ and µp

λ are the posterior loadings on the private signal and the price.
Finally, the posterior variance is

Σλ
.
= VarD0 (λ|λj , p) = Σλ,λ − Σλ,sΣ

−1
s,sΣsλ =

[
c2D(n− 1) + c2Lm

]
σ2
εσ

2
λ

c̄2σ2
λ +

[
c2D(n− 1) + c2Lm

]
(σ2

ε + σ2
λ)

It immediately follows that, as the number of bidders grows large,

lim
n→∞

Σλ = 0 : lim
m→∞

Σλ = 0

which is the desired result and completes the proof.

In the special case that m = 0, that is the pure common value, µλ and Σλ simplify to

µλ = λ̄
σ2
ε

nσ2
λ + σ2

ε

−
σ2
λnaD

cD[nσ2
λ + σ2

ε ]
p+

σ2
λ(nbD −Qa)

cD[nσ2
λ + σ2

ε ]
= λ̄τε −

naD
cD

τλp+ τλ
(nbD −QA)

cD

and

Σλ
.
= VarD0 (λ|λj , p) = Σλ,λ − Σλ,sΣ

−1
s,sΣsλ =

σ2
εσ

2
λ

σ2
ε + nσ2

λ
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■

A.1.3 Proof of Proposition 2

Proof. Taking other bidders’ strategies as given, the dealers maximize the objective

max
qj

π0(qj) + µλπ1(qj)−
γ̂

2

(
π1(qj) + µλκ

−1
)2 − pqj

where p = Ij,D + dDqj The first-order condition for qj is

π′
0(qj) + µλπ

′
1(qj)− Ij,D − 2qjdD = γ̂

(
π1(qj) + µλκ

−1
)
π′
1(qj)

From Lemma 1, it follows that

π′
0(qj) = 1− κQa − λj − κqj

π′
1(qj) = −1

As a result, the first-order condition is rewritten as

1− κQa − λj − κqj − µλ − p− qjdD = γ̂
(
qj + λjκ

−1 − µλκ
−1 −Qa

)
where we substitute Ij,D = p− dDqj . Solving for qj gives

bD − aDp− cDλj = qj =
1− p+ (γ̂ − κ)Qa − λj(1 + γ̂κ−1) + µλ(γ̂κ

−1 − 1)

κ+ dD + γ̂

Matching coefficients on p and λj gives

cD = (κ+ γ̂ + dD)
−1
{
(1 + γ̂κ−1)− µλ

λ(γ̂κ
−1 − 1)

}
aD = (κ+ γ̂ + dD)

−1
{
1− µp

λ(γ̂κ
−1 − 1)

}
which gives equations (6) and (7). The demand intercept bD solves

bD = (κ+ γ̂ + dD)
−1
{
1 + (γ̂ − κ)Qa + µ̄λ(γ̂κ

−1 − 1)
}

Taking other bidders’ strategies as given, the long-term investors maximize

max
qk

qk(1− p)− 2λkqk − κ (qk)
2

where p = Ik,L + dLqk. The first-order condition is

1− Ik,L − 2qkdD − 2λk − 2κqk = 0

Using Ik,L = p− dLqk and solving for qk gives

bL − aLp− cLλk = qk =
1− p− 2λk

dL + 2κ
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Matching coefficients on p and λk gives

aL = (dL + 2κ)−1

cL = 2(dL + 2κ)−1

The demand intercepts bL is

bL = (dL + 2κ)−1 = aL

This is the desired result and it completes the proof.
■

A.1.4 Proof of Proposition 3

Proof. If n = 0, the slope of the inverse residual supply is dL = a−1
L (m− 1)−1. It follows that

aL = (a−1
L (n− 1)−1 + 2κ)−1

Solving for aL gives

aIPV
L =

m− 2

m− 1

1

2κ

Since cL = 2aL, it immediately follows that cIPV
L = m−2

m−1
1
κ , concluding the proof. As m → ∞, the

IPV case approaches the price-taking benchmark. ■

A.1.5 Proof of Proposition 4

Proof. Setting m = 0, it immediately follows that dD = a−1
D (n− 1)−1 and that

µλ
λ = 0

Therefore, the system of equations simplifies to

cD =
1 + γ̂κ−1

κ+ γ̂ + dD

aD =
1 + naD

cD
τλ(γ̂κ

−1 − 1)

κ+ γ̂ + dD

where we substitute µp
λ = −naD

cD
τλ. Hence

aD = (κ+ γ̂ + dD)
−1

{
1 + naDτλ(κ+ γ̂ + dD)

γ̂ − κ

γ̂ + κ

}
Rearranging and using the definition of dD gives

aD(n− 1)(κ+ γ̂) + 1

n− 1
=

[
1− nτλ

γ̂ − κ

γ̂ + κ

]−1
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Solving for a gives

aD =

{
(n− 1)

[
1− nτλ

γ̂ − κ

γ̂ + κ

]−1

− 1

}
1

(n− 1)(κ+ γ̂)
=

(n− 2)(γ̂ + κ) + nτλ(γ̂ − κ)

(n− 1)(γ̂ + κ) [(γ̂ + κ)− nτλ(γ̂ − κ)]

Finally, cD is given by

cD =
γ̂κ−1 + 1

κ+ γ̂ + (n− 1)−1a−1
D

γ̂κ−1 + 1

κ+ γ̂ + (γ̂+κ)[(γ̂+κ)−nτλ(γ̂−κ)]
(n−2)(γ̂+κ)+nτλ(γ̂−κ)

=
(n− 2)(γ̂ + κ) + nτλ(γ̂ − κ)

(n− 1)(γ̂ + κ)κ

In summary

aCV
D =

(n− 2)(γ̂ + κ) + nτλ(γ̂ − κ)

(n− 1)(γ̂ + κ) [(γ̂ + κ)− nτλ(γ̂ − κ)]

cCV
D =

(n− 2)(γ̂ + κ) + nτλ(γ̂ − κ)

(n− 1)(γ̂ + κ)κ

which is the desired result and completes the proof. ■

A.1.6 Proof of Proposition 5

Proof. Downward sloping demand schedules, that is aD > 0 and aL > 0, require that cL ∈ CL
.
=(

1
κ
m−2
m−1 ,

1
κ

)
. Further, cD > 0. To see why, suppose instead that cD ⩽ 0. Given aD > 0 and

aL > 0, it follows that κ+ γ̂(c) + dD(c) > 0. Hence, cD = f2(c) ⩽ 0 is negative only if

µλ
λ(c)(γ̂(c)κ

−1 − 1) ⩾ γ̂(c)κ−1 + 1 ⇐⇒ µλ
λ(c) ⩽

γ̂(c)κ−1 + 1

γ̂(c)κ−1 − 1
= −

(
2γΣλ(c)

κ
+ 1

)
⩽ −1

Substituting the definition of µλ
λ(c) and rearranging, µλ

λ(c) ⩽ −1 implies that

mσ2
λcLcD ⩾ [(n− 1)cD +mcL]

2σ2
λ +

[
c2D(n− 1) + c2Lm

]
(σ2

ε + σ2
λ) +mσ2

λc
2
L

All terms on the right-hand side are strictly positive, so the inequality cannot hold for cD ⩽ 0.
Further, since n > 1, there is no c ∈ R2 such that µλ

λ(c) ⩽ −1. Hence f2(c) > 0 for all c ∈ R2.

I next derive bounds for cD = f2(c). First, f2(c) > 0 for all c ∈ R2, so that mD = 0 is a lower
bound. Given that f2(cL, cD) is continuous in cD, f2(cL, 0) > 0 and since limcD→∞ f2(cL, cD) <

∞ is finite for all cL ∈ CL, the intermediate value theorem implies that there is cD(cL) < ∞ such
that cD(cL) = f2(cL, cD(cL)) for all cL ∈ CL. Hence, there is an upper bound MD < ∞ such
that f(cL, cD) ⩽ MD. Thus, the set FD = [0,MD] satisfies 0 < f2(c) ⩽ MD for all c ∈ CL ×FD.

Second, consider f1(c), cD ∈ FD and cL ∈ CL =
(

1
κ
m−2
m−1 ,

1
κ

)
. The function f1(c) is continuous

over CL ×FD. As cL approaches the left endpoint 1
κ
m−2
m−1 , f1(c) → ∞ for all cD ∈ FD. The limit

of f1(c) as cL approaches the right endpoint 1
κ is

lim
cL→ 1

κ

f1(cL, cD) =
n · σ2

λ((n− 1)cD +mκ−1) · (γ̂(κ−1, cD)κ
−1 − 1)

(κ+ γ̂(κ−1, cD))
[
((n− 1)cD +mκ−1)2σ2

λ +
(
c2D(n− 1) +mκ−2

)
(σ2

ε + σ2
λ)
] · 1

κ
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which is finite. The denominator is strictly positive, whereas the numerator is strictly negative
given that (γ̂(κ−1, cD)κ

−1 − 1) < 0. Hence limcL→ 1
κ
f1(cL, cD) < 0. By the intermediate value

theorem, there exists c∗L for each cD ∈ FD with the property that c∗L = f1(c
∗
L, cD) such that

c∗L ∈ CL. Define the function g(c∗L, cD)
.
= f1(c

∗
L, cD) − c∗L, and note that g(c∗L, cD) = 0. By the

implicit function theorem, there exists a continuously differentiable function c∗L = h(cD) in an
open set U ⊂ R, cD ∈ U . Because the conditions for the implicit function theorem are satisfied
for all cD ∈ FD, h is continuous over FD.

Substituting c∗L = h(cD) into f2(c) gives

cD = f2(h(cD), cD) =
γ̂(h(cD), cD)κ

−1 + 1− µλ
λ(h(cD), cD)(γ̂(h(cD), cD)κ

−1 − 1)

κ+ γ̂(h(cD), cD) + dD(h(cD), cD)

The range of h(cD) is CL, so that f2(h(cD), cD) is continuous and maps the compact and convex
set FD into itself. Brouwer’s fixed point theorem applies, and there exists a fixed point c∗ =

(c∗L, c
∗
D), f(c

∗) = c∗, such that aD > 0 and aL > 0. Both (c∗L, c
∗
D) are strictly positive. ■

A.1.7 Proof of Proposition 6

Proof. By way of contradiction, suppose that there is a symmetric equilibrium with a = aD = aL

and c = cD = cL. The number of bidders is N = m+ n. It follows that µλ(λj) = 0 and that

µλ(p) = −
Naσ2

λ

c
[
Nσ2

λ + σ2
ε

] = −Na

c
τλ

Since the slope is dD = dA = d = (N − 1)−1a−1, it immediately follows that

a =
(
κ+ γ̂ + (N − 1)−1a−1

)−1
{
1 +

Na

c
τλ(γ̂κ

−1 − 1)

}
c =

(
κ+ γ̂ + (N − 1)−1a−1

)−1
(γ̂κ−1 + 1)

a = ((N − 1)−1a−1 + 2κ)−1

c = 2((N − 1)−1a−1 + 2κ)−1

Since all these equations must hold at the same time, the third and the fourth line imply that
a = 2c. However, it must then be the case that

1 + 2Nτλ(γ̂κ
−1 − 1) = 2

(
γ̂κ−1 + 1

)
Rearranging, we see that

(Nτλ − 1)2
γ̂

κ
− 1− 2Nτλ = 0

However, since Nτλ − 1 = −τε < 0, γ̂ > 0, κ > 0 and N > 0, all terms on the right hand side
are negative. It follows that the equation cannot hold, which is a contradiction. ■
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A.1.8 Proof of Proposition 7

Consider the interval cL ∈
(

1
κ
m−2
m−1 ,

1
κ

)
in which demand schedules are downward sloping for both

types. Differentiating aD with respect to cL gives

∂aD
∂cL

=
1

2n

1− (m− 1)(1− κcL)
2

(1− κcL)2
∂aD
∂cL

=
1

2
· 1
n

{
1

(1− κcL)2
− (m− 1)

}
Since ∂aL

∂cL
= 1

2 , it is sufficient to show that

1

n

{
1

(1− κcL)2
− (m− 1)

}
> 1

Define the function f(x)

f(x) =
1

n

{
1

(1− κx)2
− (m− 1)

}

in the interval x ∈ X .
=
[
1
κ
m−2
m−1 ,

1
κ

)
. First, note that f ′(x) > 0 for x ∈ X . In fact, since x > 0,

n > 0.

f ′(x) =
1

n

2κ

(1− κx)3
−→ f ′(x) > 0 if x <

1

κ

Hence, f(x) is minimal for x0 =
1
κ
m−2
m−1 . Dealers are more sensitive if f(x0) > 1, or

f(x0) =
1

n
(m− 1)(m− 2) > 1 ⇐⇒ (m− 1)(m− 2) > n

which completes the proof.

A.2 Normal Random Variables and CARA Utility

Let

µ =

[
µθ

µs

]
: Σ =

[
Σθ,θ Σθ,s

Σs,θ Σs,s

]

The conditional density of θ given s is normal with conditional mean

E[θ|s] = µθ +Σθ,sΣ
−1
s,s(s− µs)

and variance-covariance matrix

Var(θ|s) = Σθ,θ − Σθ,sΣ
−1
s,sΣs,θ

In a two-dimensional case, since µs = θ̄, the conditional expectation can be written as

E[θ|s] = Cov(θ, s)
Var(s)

s+

(
1− Cov(θ, s)

Var(s)

)
θ̄ = ξs+ (1− ξ)θ̄
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which is the standard Bayesian updating rule with normal priors and normal likelihood. The
expression can be generalized to accommodate for common and private values.

Another useful result is the expectation of a quadratic form of normal random variables. Let
ω = c+ b′z + z′Az and z ∼ N (0,Σ). Then

−E[e−ρω] = (detΣ)−
1
2
(
det
(
Σ−1 + 2ρA

))− 1
2 e

−ρ
[
c− 1

2
ρb′(Σ−1+2ρA)

−1
b
]

A proof can be found in Danthine and Moresi (1993).
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B Additional Results

B.1 Determinants of demand heterogenenity

Correlation between demand elasticity and auxiliary variables

Log demand elasticity

TE βij TE βij TE βij TE βij TE βij TE βij TE βij

σj−21,j −1.78∗∗∗ −0.91∗∗∗

(0.13) (0.16)
σb,j −0.31 −0.08

(0.52) (0.42)
RBASj −0.68∗∗∗ −0.30∗∗∗

(0.04) (0.07)
Maturity −0.05∗∗∗ −0.01

(0.00) (0.01)
Participants 0.07∗∗∗ 0.03∗∗∗

(0.01) (0.01)
Log issue size 0.31∗∗∗ -0.02

(0.05) (0.06)
Constant 5.88∗∗∗ 5.15∗∗∗ 5.59∗∗∗ 5.93∗∗∗ 4.19∗∗∗ 1.15∗∗ 5.73∗∗∗

(0.06) (0.04) (0.04) (0.06) (0.09) (0.57) (0.66)

Adj. R2 0.22 -0.00 0.22 0.20 0.09 0.04 0.28
N 993 1087 1087 1188 1188 1188 993

Table 9: Determinants of demand elasticity. TE is the total elasticity of demand using all bids. σj−21,j

denotes the volatility of the bond in the month prior to the auction. RBASj is the relative bid-ask spread
at the auction date. Maturity refers to time to maturity at the auction date. Participants is the number
of bidders. Log issue size is the logarithm of supply. he sample is from 2000 to present. Robust standard
errors are in parentheses. ∗, ∗∗, ∗∗∗ correspond to significance levels of 10%, 5% and 1%, respectively.
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Alternative measures of demand elasticity

Log demand elasticity

TE βij IE βij WE βij

σj−21,j −0.44∗∗ −0.73∗∗∗ -0.45
(0.19) (0.19) (0.30)

σj−21,j × 1{DB}i −0.57∗∗∗ −0.35∗∗∗ −0.54∗∗∗

(0.12) (0.12) (0.19)
Maturity −0.03∗∗∗ −0.03∗∗∗ −0.03∗∗∗

(0.01) (0.01) (0.01)
Participants 0.02∗∗∗ 0.01 0.03∗∗

(0.01) (0.01) (0.02)
Log issue size −0.08 −0.09∗ −0.08

(0.06) (0.05) (0.10)
Constant 6.59∗∗∗ 7.02∗∗∗ 6.64∗∗∗

(0.67) (0.65) (1.16)

Macro ✓ ✓ ✓
Adj. R2 0.30 0.38 0.21
N 993 993 660

Table 10: Coefficient estimates of regression (10). σj−21,j denotes the volatility of the bond in the
month prior to the auction, whereas 1{DB} is a binary variable equal to one if bidder i is a dealer bank.
Maturity refers to time to maturity at the auction date. Participants is the number of bidders. Log
issue size is the logarithm of supply. Macro controls include inflation, the short term rate (SARON),
the slope of the yield curve, and the KOF economic barometer. The sample is from 2000 to present and
only considers security reopenings. Robust standard errors are in parentheses. ∗, ∗∗, ∗∗∗ correspond to
significance levels of 10%, 5% and 1%, respectively. We include alternative measures of the steepness of
demand curves. TE is the total elasticity of demand using all bids. IE is the demand elasticity obtained
by dropping the highest and the lower bids. WE is the demand elasticity computed using winning bids.
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Robustness checks: dropping auctions around EURCHF floor removal

Log demand elasticity

TE βij TE βij TE βij TE βij

σj−21,j −1.58∗∗∗ −1.24∗∗∗ −0.55∗∗∗ −0.51∗∗∗

(0.15) (0.16) (0.20) (0.20)
σj−21,j × 1{DB}i −0.60∗∗∗ −0.58∗∗∗ −0.59∗∗∗

(0.13) (0.13) (0.12)
Maturity −0.02∗∗∗ −0.03∗∗∗

(0.01) (0.01)
Participants 0.02∗∗ 0.02∗∗

(0.01) (0.01)
Log issue size −0.07

(0.06)
Constant 5.59∗∗∗ 5.63∗∗∗ 5.59∗∗∗ 6.42∗∗∗

(0.09) (0.08) (0.14) (0.67)

Macro ✓ ✓ ✓ ✓
Adj. R2 0.25 0.27 0.29 0.29
N 975 975 975 975

Table 11: Coefficient estimates of regression (10). The dependent variable is the total elasticity (TE) of
demand (in logs) at the bidder level. σj−21,j denotes the volatility of the bond in the month prior to the
auction, whereas 1{DB} is an indicator equal to one if bidder i is a dealer bank. Maturity refers to time
to maturity at the auction date. Participants is the number of bidders. Log issue size is the logarithm of
supply. Macro controls include inflation, the short term rate (SARON), the slope of the yield curve, and
the KOF economic barometer. The sample is from 2000 to present and only considers security reopenings.
We drop auctions around the EURCHF cap removal on January 15, 2015. Robust standard errors are in
parentheses. ∗, ∗∗, ∗∗∗ correspond to significance levels of 10%, 5% and 1%, respectively.
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Robustness checks: dropping auctions around the Covid-19 shock.

Log demand elasticity

TE βij TE βij TE βij TE βij

σj−21,j −1.61∗∗∗ −1.26∗∗∗ −0.53∗∗∗ −0.48∗∗

(0.16) (0.16) (0.20) (0.20)
σj−21,j × 1{DB}i −0.59∗∗∗ −0.59∗∗∗ −0.60∗∗∗

(0.13) (0.13) (0.12)
Maturity −0.03∗∗∗ −0.03∗∗∗

(0.01) (0.01)
Participants 0.02∗∗ 0.02∗∗

(0.01) (0.01)
Log issue size -0.08

(0.06)
Constant 5.58∗∗∗ 5.61∗∗∗ 5.61∗∗∗ 6.49∗∗∗

(0.10) (0.09) (0.15) (0.69)

Macro ✓ ✓ ✓ ✓
Adj. R2 0.26 0.28 0.30 0.31
N 959 959 959 959

Table 12: Coefficient estimates of regression (10). The dependent variable is the total elasticity (TE)
of demand (in logs) at the bidder level. σj−21,j denotes the volatility of the bond in the month prior to
the auction, whereas 1{DB} is an indicator equal to one if bidder i is a dealer bank. Maturity refers
to time to maturity at the auction date. Participants is the number of bidders. Log issue size is the
logarithm of supply. Macro controls include inflation, the short term rate (SARON), the slope of the
yield curve, and the KOF economic barometer. The sample is from 2000 to present and only considers
security reopenings. We drop auctions between March 2020 and September 2020. Robust standard errors
are in parentheses. ∗, ∗∗, ∗∗∗ correspond to significance levels of 10%, 5% and 1%, respectively.
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Alternative measures of bid dispersion

Log demand elasticity

TE βij TE βij TE βij TE βij

σb,j 0.35
(0.41)

σb,j × 1{DB}i −1.14∗

(0.65)
σ̂b,j 0.42

(0.37)
σ̂b,j × 1{DB}i −1.10∗

(0.62)
σ̄b,j −3.14∗

(1.88)
σ̄b,j × 1{DB}i −5.44∗∗∗

(1.54)
σ̃b,j −2.00

(1.97)
σ̃b,j × 1{DB}i −5.57∗∗∗

(1.63)
Constant 6.42∗∗∗ 6.40∗∗∗ 7.01∗∗∗ 6.82∗∗∗

(0.68) (0.67) (0.69) (0.68)

Controls ✓ ✓ ✓ ✓
Macro ✓ ✓ ✓ ✓
Adj. R2 0.33 0.33 0.35 0.35
N 993 993 993 993
p-sum 0.07 0.07 0.00 0.00

Table 13: Coefficient estimates of regression (10) using alternative proxies of cross-sectional cost
dispersion. First, σb,j is the standard deviation of quantity-weighted bid yields. Second, σ̂b,j is the
standard deviation of equally-weighted bid yields. Third, σ̄b,j is the interquartile range of quantity-
weighted bid yields. Fourth, σ̃b,j is the interquartile range of quantity-weighted bid yields. Controls
include maturity, number of bidders, quantity-weighted yield spread, return volatility in the previous
month, the relative bid-ask spread, and the log issue size. Macro controls include inflation, the short-
term rate (SARON), the slope of the yield curve, and the KOF economic barometer. The sample is from
2000 to present and only considers security reopenings. Robust standard errors are in parentheses. ∗, ∗∗,
∗∗∗ correspond to significance levels of 10%, 5% and 1%, respectively.p-sum is the p-value from testing
the null hypothesis that b1 + b2 ≥ 0.
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Cost dispersion as volatility of residuals

Log demand elasticity

TE βij TE βij TE βij TE βij

σ̂ε,j −0.02 0.03 0.04∗ 0.04
(0.02) (0.03) (0.03) (0.03)

σ̂ε,j × 1{DB}i −0.08∗∗∗ −0.08∗∗∗ −0.07∗∗

(0.03) (0.03) (0.03)
Maturity −0.05∗∗∗ −0.02∗∗

(0.00) (0.01)
Participants 0.01 0.02∗∗

(0.01) (0.01)
Log issue size −0.07

(0.06)
σj−21,j −0.67∗∗∗

(0.20)
RBASj −0.23∗∗

(0.09)
Constant 4.84∗∗∗ 4.84∗∗∗ 5.65∗∗∗ 6.38∗∗∗

(0.06) (0.06) (0.14) (0.76)

Macro ✓ ✓ ✓ ✓
Adj. R2 0.12 0.13 0.27 0.30
N 1’087 1’087 1’087 993
p-sum 0.04 0.07 0.13

Table 14: Coefficient estimates of regression (10). The dependent variable is the total elasticity (TE) of
demand (in logs) at the bidder level. σ̂ε,j is the standard deviation of regression (11) whereas 1{DB}i is
a binary variable equal to one if bidder i is a dealer bank, and zero otherwise. Maturity refers to time to
maturity at the auction date. Participants is the number of bidders. σj−21,j denotes the volatility of the
bond in the month prior to the auction Log issue size is the logarithm of supply. RBASj is the relative
bid-ask spread at the auction date. Macro controls include inflation, the short-term rate (SARON), the
slope of the yield curve, and the KOF economic barometer. The sample is from 2000 to present and
only considers security reopenings. Robust standard errors are in parentheses. ∗, ∗∗, ∗∗∗ correspond to
significance levels of 10%, 5% and 1%, respectively. p-sum is the p-value from testing the null hypothesis
that b1 + b2 ≥ 0.
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B.2 Difference in Differences (DiD) Design

Robustness checks: three-year window

Log elasticity Yield discount

TE βij TE βij Discountij Discountij

1{Basel III}j −0.11 −0.04 0.01 0.02∗

(0.16) (0.14) (0.02) (0.01)
1{DB}i −0.22 −0.29∗∗∗ 0.00 −0.00

(0.14) (0.11) (0.02) (0.02)
1{Basel III}j × 1{DB}i −0.71∗∗∗ −0.49∗∗ −0.04∗ −0.04∗

(0.24) (0.20) (0.02) (0.02)
Maturity −0.05∗∗∗ −0.00

(0.01) (0.00)
Participants −0.01 −0.00

(0.03) (0.00)
Log issue size −0.00 0.00

(0.00) (0.00)
Constant 5.37∗∗∗ 6.58∗∗∗ 0.02 0.04

(0.10) (0.36) (0.02) (0.03)

Adj. R2 0.12 0.36 0.00 0.01
N 350 350 881 881

Table 15: Coefficient estimates of the difference in differences specification (12). In the first and second
column, the dependent variable is the total elasticity of demand (in logs). In the third and in the fourth
column, the dependent variable is the quantity-weighted yield spread. 1{Basel III}j is a binary variable
equal to if the auction occurs after January 2015. 1{DB}i is a binary variable equal to one if bidder i is a
dealer bank. The sample period is from January 2012 to December 2017 and spans a three-year window
around the introduction of the Basel III regulations. Robust standard errors are in parentheses. ∗, ∗∗,
∗∗∗ correspond to significance levels of 10%, 5% and 1%, respectively.
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Robustness checks: four-year window

Log elasticity Yield discount

TE βij TE βij Discountij Discountij

1{Basel III}j −0.14 −0.06 0.02 0.03∗∗∗

(0.15) (0.14) (0.01) (0.01)
1{DB}i −0.22∗ −0.28∗∗∗ 0.01 0.01

(0.12) (0.11) (0.01) (0.01)
1{Basel III}j × 1{DB}i −0.66∗∗∗ −0.46∗∗ −0.04∗∗ −0.04∗∗

(0.21) (0.18) (0.02) (0.02)
Maturity −0.05∗∗∗ −0.00

(0.00) (0.00)
Participants −0.00 −0.00

(0.02) (0.00)
Log issue size −0.00 0.00

(0.00) (0.00)
Constant 5.36∗∗∗ 6.42∗∗∗ 0.01 0.03

(0.09) (0.30) (0.01) (0.03)

Adj. R2 0.12 0.34 0.00 0.01
N 465 465 1130 1130

Table 16: Coefficient estimates of the difference in differences specification (12). In the first and second
column, the dependent variable is the total elasticity of demand (in logs). In the third and in the fourth
column, the dependent variable is the quantity-weighted yield spread. 1{Basel III}j is a binary variable
equal to if the auction occurs after January 2015. 1{DB}i is a binary variable equal to one if bidder i is
a dealer bank. The sample period is from January 2011 to December 2018 and spans a four-year window
around the introduction of the Basel III regulations. Robust standard errors are in parentheses. ∗, ∗∗,
∗∗∗ correspond to significance levels of 10%, 5% and 1%, respectively.
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Robustness checks: dropping auctions around EURCHF floor removal

Log elasticity Yield discount

TE βij TE βij Discountij Discountij

1{Basel III}j −0.13 −0.11 0.02 0.03∗∗

(0.14) (0.13) (0.01) (0.01)
1{DB}i −0.21∗∗ −0.27∗∗∗ 0.01 0.01

(0.10) (0.09) (0.01) (0.01)
1{Basel III}j × 1{DB}i −0.56∗∗∗ −0.42∗∗ −0.04∗∗∗ −0.04∗∗

(0.19) (0.16) (0.02) (0.02)
Maturity −0.05∗∗∗ −0.00

(0.00) (0.00)
Participants −0.02 −0.00

(0.02) (0.00)
Log issue size −0.00∗ 0.00

(0.00) (0.00)
Constant 5.35∗∗∗ 6.56∗∗∗ 0.01 0.02

(0.08) (0.26) (0.01) (0.04)

Adj. R2 0.10 0.30 0.00 0.00
N 541 541 1302 1302

Table 17: Coefficient estimates of the difference in differences specification (12). In the first and second
column, the dependent variable is the total elasticity of demand (in logs). In the third and in the fourth
column, the dependent variable is the quantity-weighted yield spread. 1{Basel III}j is a binary variable
equal to if the auction occurs after January 2015. 1{DB}i is a binary variable equal to one if bidder
i is a dealer bank. The sample period is from January 2010 to December 2019 and spans a five-year
window around the introduction of the Basel III regulations, but we drop auctions around the EURCHF
cap removal on January 15, 2015. Robust standard errors are in parentheses. ∗, ∗∗, ∗∗∗ correspond to
significance levels of 10%, 5% and 1%, respectively.
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